Engineered ChymotrypsiN for Mass Spectrometry-Based Detection of Protein Glycosylation

被引:14
|
作者
Ramesh, Balakrishnan [1 ]
Abnouf, Shaza [1 ]
Mali, Sujina [2 ]
Moree, Wilna J. [2 ]
Patil, Ujwal [2 ]
Bark, Steven J. [2 ]
Varadarajan, Navin [1 ]
机构
[1] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA
[2] Univ Houston, Dept Biol & Biochem, Houston, TX 77004 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
YEAST EXTERNAL INVERTASE; CONVERTING TRYPSIN; SUBSTRATE-SPECIFICITY; ENRICHMENT METHODS; CRYSTAL-STRUCTURE; SITES; PROTEOMICS; PROTEASES; EVOLUTION; ACTIVATION;
D O I
10.1021/acschembio.9b00506
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have engineered the substrate specificity of chymotrypsin to cleave after Asn by high-throughput screening of large libraries created by comprehensive remodeling of the substrate binding pocket. The engineered variant (chymotrypsiN, ChyB-Asn) demonstrated an altered substrate specificity with an expanded preference for Asn-containing substrates. We confirmed that protein engineering did not compromise the stability of the enzyme by biophysical characterization. Comparison of wild-type ChyB and ChyB-Asn in profiling lysates of HEK293 cells demonstrated both qualitative and quantitative differences in the nature of the peptides and proteins identified by liquid chromatography and tandem mass spectrometry. ChyB-Asn enabled the identification of partially glycosylated Asn sites within a model glycoprotein and in the extracellular proteome of Jurkat T cells. ChymotrypsiN is a valuable addition to the toolkit of proteases to aid the mapping of N-linked glycosylation sites within proteins and proteomes.
引用
收藏
页码:2616 / 2628
页数:13
相关论文
共 50 条
  • [21] Development of a Mass Spectrometry-Based Assay for the Detection of Endogenous and Lentiviral Engineered Hemoglobin in Sickle Cell Mice
    Wang, Xuejun
    Dlugi, Theresa A.
    Faber, Mary L.
    McKillop, William M.
    Argote, Juliana Alvarez
    Wilber, Andrew
    Medin, Jeffrey A.
    MOLECULAR THERAPY, 2022, 30 (04) : 171 - 171
  • [22] Mass spectrometry-based protein analysis and signaling proteomics
    Taniguchi, H
    SEIKAGAKU, 2004, 76 (10): : 1289 - 1295
  • [23] Labeling strategies in mass spectrometry-based protein quantitation
    Gant-Branum, Randi L.
    Kerr, Thomas J.
    McLean, John A.
    ANALYST, 2009, 134 (08) : 1525 - 1530
  • [24] Fetal Environment and Glycosylation Status in Neonatal Cord Blood: A Comprehensive Mass Spectrometry-based Glycosylation Analysis
    Sato, Ryosuke
    Tsuchiya, Kenji J.
    Matsuzaki, Hideo
    Takei, Nori
    Itoh, Hiroaki
    Kanayama, Naohiro
    Suda, Takafumi
    Watanabe, Hiroshi
    Ohashi, Tetsu
    Tanaka, Masakazu
    Nishimura, Shin-Ichiro
    Maekawa, Masato
    MEDICINE, 2016, 95 (14)
  • [25] Mass spectrometry-based proteomics
    Ruedi Aebersold
    Matthias Mann
    Nature, 2003, 422 : 198 - 207
  • [26] Mass spectrometry-based proteomics
    Hood, BL
    Veenstra, TD
    Conrads, TP
    ADVANCES IN FERTILITY AND REPRODUCTIVE MEDICINE, 2004, 1266 : 375 - 380
  • [27] Mass spectrometry-based metabolomics
    Dettmer, Katja
    Aronov, Pavel A.
    Hammock, Bruce D.
    MASS SPECTROMETRY REVIEWS, 2007, 26 (01) : 51 - 78
  • [28] Mass spectrometry-based quantification
    DeSouza, Leroi V.
    Siu, K. W. Michael
    CLINICAL BIOCHEMISTRY, 2013, 46 (06) : 421 - 431
  • [29] Mass spectrometry-based proteomics
    Aebersold, R
    Mann, M
    NATURE, 2003, 422 (6928) : 198 - 207
  • [30] Pitfalls and Solutions in Mass Spectrometry-Based Identification of Protein Glycation
    Ma, Wendong
    Ang, Irene Ling
    Lei, Kate M. K.
    Lam, Melody Man Ting
    Zhang, Pengwei
    Poon, Terence Chuen Wai
    ANALYTICAL CHEMISTRY, 2023, 95 (03) : 1829 - 1837