Optimization of Islet Microencapsulation with Thin Polymer Membranes for Long-Term Stability

被引:10
|
作者
Toda, Shota [1 ]
Fattah, Artin [2 ]
Asawa, Kenta [3 ]
Nakamura, Naoko [1 ]
Ekdahl, Kristina N. [2 ,4 ]
Nilsson, Bo [2 ]
Teramura, Yuji [2 ,3 ]
机构
[1] Shibaura Inst Technol, Coll Syst Engn & Sci, Dept Biosci & Engn, Saitama 3378570, Japan
[2] Uppsala Univ, Dept Immunol Genet & Pathol IGP, Dag Hammarskjolds Vag 20, SE-75185 Uppsala, Sweden
[3] Univ Tokyo, Sch Engn, Dept Bioengn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[4] Linnaeus Univ, Linnaeus Ctr Biomat Chem, SE-39182 Kalmar, Sweden
基金
瑞典研究理事会; 日本学术振兴会;
关键词
microencapsulation; bioartificial pancreas; islet transplantation; polyethylene glycol-lipid (PEG-lipid); cell surface modification; ENCAPSULATED PORCINE ISLETS; TRANSPLANTATION; PANCREAS; XENOTRANSPLANTATION; MICROCAPSULES; AGAROSE; SAFETY;
D O I
10.3390/mi10110755
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Microencapsulation of islets can protect against immune reactions from the host immune system after transplantation. However, sufficient numbers of islets cannot be transplanted due to the increase of the size and total volume. Therefore, thin and stable polymer membranes are required for the microencapsulation. Here, we undertook the cell microencapsulation using poly(ethylene glycol)-conjugated phospholipid (PEG-lipid) and layer-by-layer membrane of multiple-arm PEG. In order to examine the membrane stability, we used different molecular weights of 4-arm PEG (10k, 20k and 40k)-Mal to examine the influence on the polymer membrane stability. We found that the polymer membrane made of 4-arm PEG(40k)-Mal showed the highest stability on the cell surface. Also, the polymer membrane did not disturb the insulin secretion from beta cells.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Development of NH4+-sensitive polymer membranes for long-term performance microsensor
    Brzozka, Z
    Dawgul, M
    Pijanowska, D
    Torbicz, W
    OPTOELECTRONIC AND ELECTRONIC SENSORS II, 1997, 3054 : 187 - 196
  • [42] Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity
    Kutcherlapati, S. N. Raju
    Yeole, Niranjan
    Jana, Tushar
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2016, 463 : 164 - 172
  • [43] Long-Term Stability of Optical Properties of Colloidal CdSe Nanocrystals in Polymer Matrices
    Azhniuk, Yu M.
    Lopushansky, V. V.
    Gomonnai, A., V
    Lopushanska, B., V
    Raevskaya, A. E.
    Dzhagan, V. M.
    Stroyuk, O. L.
    Zahn, D. R. T.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2019, 18 (3-4)
  • [44] Long-term structural stability of PMMA-based gel polymer electrolytes
    Quartarone, E
    Tomasi, C
    Mustarelli, P
    Appetecchi, GB
    Croce, F
    ELECTROCHIMICA ACTA, 1998, 43 (10-11) : 1436 - +
  • [45] LONG-TERM CHEMICAL STABILITY OF EPICHLOROHYDRIN-BISPHENOL RESIN POLYMER CONCRETE
    BALUCH, MH
    ARAB, AK
    TOLBERT, RN
    HACKETT, RM
    CEMENT AND CONCRETE RESEARCH, 1977, 7 (06) : 637 - 642
  • [46] Improved long-term stability of high-performance photorefractive polymer devices
    Meerholz, K
    Bittner, R
    Brauchle, C
    Volodin, BL
    Sandalphon
    Kippelen, B
    Peyghambarian, N
    ORGANIC PHOTOREFRACTIVE MATERIALS AND XEROGRAPHIC PHOTORECEPTORS, 1996, 2850 : 100 - 107
  • [47] Generation and Long-Term Culturing of AIPCs for Islet Replacement
    Pollett, J. B.
    Bottino, R.
    Bertera, S.
    Trucco, M.
    Thai, N.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2020, 20 : 355 - 355
  • [49] Transdifferentiation of human islet cells in a long-term culture
    Schmied, BM
    Ulrich, A
    Matsuzaki, H
    Ding, XZ
    Ricordi, C
    Weide, L
    Moyer, MP
    Batra, SK
    Adrian, TE
    Pour, PM
    PANCREAS, 2001, 23 (02) : 157 - 171
  • [50] Combinational therapies for long-term islet xenograft survival
    Rayat, GR
    Korbutt, GS
    Rajotte, RV
    Gill, RG
    XENOTRANSPLANTATION, 2001, 8 : 123 - 123