Strong coupling of finite element methods for the Stokes-Darcy problem

被引:41
|
作者
Marquez, Antonio [1 ]
Meddahi, Salim [2 ]
Sayas, Francisco-Javier [3 ]
机构
[1] Univ Oviedo, Dept Construcc & Ingn Fabricac, Oviedo, Spain
[2] Univ Oviedo, Fac Ciencias, Dept Matemat, Oviedo, Spain
[3] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
mixed finite elements; Stokes problem; Darcy problem; POROUS-MEDIA FLOW; BOUNDARY-CONDITIONS; FLUID-FLOW; DISCRETIZATIONS; EQUATIONS; SURFACE;
D O I
10.1093/imanum/dru023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to propose a systematic way to obtain convergent finite element schemes for the Stokes-Darcy flow problem by combining well-known mixed finite elements that are separately convergent for Stokes and Darcy problems. In the approach in which the Darcy problem is set in its natural H(div) formulation and the Stokes problem is expressed in velocity-pressure form, the transmission condition ensuring global mass conservation becomes essential. As opposed to the strategy that handles weakly this transmission condition through a Lagrange multiplier, we impose here this restriction exactly in the global velocity space. Our analysis of the Galerkin discretization of the resulting problem reveals that if the mixed finite element space used in the Darcy domain admits an H(div)-stable discrete lifting of the normal trace, then it can be combined with any stable Stokes mixed finite element of the same order to deliver a stable global method with quasi-optimal convergence rate. Finally, we present a series of numerical tests confirming our theoretical convergence estimates.
引用
收藏
页码:969 / 988
页数:20
相关论文
共 50 条
  • [21] On classical iterative subdomain methods for the Stokes-Darcy problem
    Caiazzo, Alfonso
    John, Volker
    Wilbrandt, Ulrich
    [J]. COMPUTATIONAL GEOSCIENCES, 2014, 18 (05) : 711 - 728
  • [22] Discontinuous Finite Volume Element Method for a Coupled Non-stationary Stokes-Darcy Problem
    Li, Rui
    Gao, Yali
    Li, Jian
    Chen, Zhangxin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (02) : 693 - 727
  • [23] COUPLING STOKES-DARCY FLOW WITH TRANSPORT
    Vassilev, Danail
    Yotov, Ivan
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05): : 3661 - 3684
  • [24] A two-grid decoupled penalty finite element method for the stationary Stokes-Darcy problem
    Han, Wei-Wei
    Jiang, Yao-Lin
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 136
  • [25] Long time stability of four methods for splitting the evolutionary Stokes-Darcy problem into Stokes and Darcy subproblems
    Layton, William
    Hoang Tran
    Xiong, Xin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (13) : 3198 - 3217
  • [26] Robin-Robin domain decomposition methods for the Stokes-Darcy coupling
    Discacciati, Marco
    Quarteroni, Alfio
    Valli, Alberto
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 1246 - 1268
  • [27] Balancing domain decomposition methods for mortar coupling stokes-darcy systems
    Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina 110, CEP 22460320, Rio de Janeiro, Brazil
    不详
    不详
    [J]. Lect. Notes Comput. Sci. Eng, 2007, (373-380):
  • [28] Stokes-Darcy coupling for periodically curved interfaces
    Dobberschutz, Soren
    [J]. COMPTES RENDUS MECANIQUE, 2014, 342 (02): : 73 - 78
  • [29] A mortar method for the coupled Stokes-Darcy problem using the MAC scheme for Stokes and mixed finite elements for Darcy
    Boon, Wietse M.
    Glaeser, Dennis
    Helmig, Rainer
    Weishaupt, Kilian
    Yotov, Ivan
    [J]. COMPUTATIONAL GEOSCIENCES, 2024, 28 (03) : 413 - 430
  • [30] A stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem
    Li, Rui
    Li, Jian
    Chen, Zhangxin
    Gao, Yali
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 92 - 104