Deep learning-based intravascular ultrasound segmentation for the assessment of coronary artery disease

被引:28
|
作者
Nishi, Takeshi [1 ,2 ,3 ]
Yamashita, Rikiya [4 ]
Imura, Shinji [1 ,2 ]
Tateishi, Kazuya [3 ]
Kitahara, Hideki [3 ]
Kobayashi, Yoshio [3 ]
Yock, Paul G. [1 ,2 ]
Fitzgerald, Peter J. [1 ,2 ]
Honda, Yasuhiro [1 ,2 ]
机构
[1] Stanford Univ, Sch Med, Div Cardiovasc Med, Stanford, CA 94305 USA
[2] Stanford Cardiovasc Inst, Stanford, CA 94305 USA
[3] Chiba Univ, Grad Sch Med, Dept Cardiovasc Med, Chiba, Chiba, Japan
[4] Stanford Univ, Sch Med, Dept Biomed Data Sci, Stanford, CA 94305 USA
关键词
Intravascular ultrasound; Artificial intelligence; Deep learning;
D O I
10.1016/j.ijcard.2021.03.020
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Accurate segmentation of the coronary arteries with intravascular ultrasound (IVUS) is important to optimize coronary stent implantation. Recently, deep learning (DL) methods have been proposed to develop automatic IVUS segmentation. However, most of those have been limited to segmenting the lumen and vessel (i.e. lumen-intima and media-adventitia borders), not applied to segmenting stent dimension. Hence, this study aimed to develop a DL method for automatic IVUS segmentation of stent area in addition to lumen and vessel area. Methods: This study included a total of 45,449 images from 1576 IVUS pullback runs. The datasets were randomly split into training, validation, and test datasets (0.7:0.15:0.15). After developing the DL-based system to segment IVUS images using the training and validation datasets, we evaluated the performance through the independent test dataset. Results: The DL-based segmentation correlated well with the expert-analyzed segmentation with a mean intersection over union (+/- standard deviation) of 0.80 +/- 0.20, correlation coefficient of 0.98 (95% confidence intervals: 0.98 to 0.98), 0.96 (0.95 to 0.96), and 0.96 (0.96 to 0.96) for lumen, vessel, and stent area, and the mean difference (+/- standard deviation) of 0.02 = 0.57, -0.44 +/- 1.56 and - 0.17 +/- 0.74 mm(2) for lumen, vessel and stent area, respectively. Conclusion: This automated DL-based IVUS segmentation of lumen, vessel and stent area showed an excellent agreement with manual segmentation by experts, supporting the feasibility of artificial intelligence-assisted IVUS assessment in patients undergoing coronary stent implantation. (C) 2020 Published by Elsevier B.V.
引用
收藏
页码:55 / 59
页数:5
相关论文
共 50 条
  • [31] Deep learning-based segmentation of multisite disease in ovarian cancer
    Buddenkotte, Thomas
    Rundo, Leonardo
    Woitek, Ramona
    Sanchez, Lorena Escudero
    Beer, Lucian
    Crispin-Ortuzar, Mireia
    Etmann, Christian
    Mukherjee, Subhadip
    Bura, Vlad
    McCague, Cathal
    Sahin, Hilal
    Pintican, Roxana
    Zerunian, Marta
    Allajbeu, Iris
    Singh, Naveena
    Sahdev, Anju
    Havrilesky, Laura
    Cohn, David E.
    Bateman, Nicholas W.
    Conrads, Thomas P.
    Darcy, Kathleen M.
    Maxwell, G. Larry
    Freymann, John B.
    Oktem, Ozan
    Brenton, James D.
    Sala, Evis
    Schonlieb, Carola-Bibiane
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
  • [32] Deep Learning-Based Segmentation in Classification of Alzheimer’s Disease
    P. R. Buvaneswari
    R. Gayathri
    Arabian Journal for Science and Engineering, 2021, 46 : 5373 - 5383
  • [33] Deep Learning-Based Segmentation in Classification of Alzheimer's Disease
    Buvaneswari, P. R.
    Gayathri, R.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (06) : 5373 - 5383
  • [34] Deep learning-based segmentation of multisite disease in ovarian cancer
    Thomas Buddenkotte
    Leonardo Rundo
    Ramona Woitek
    Lorena Escudero Sanchez
    Lucian Beer
    Mireia Crispin-Ortuzar
    Christian Etmann
    Subhadip Mukherjee
    Vlad Bura
    Cathal McCague
    Hilal Sahin
    Roxana Pintican
    Marta Zerunian
    Iris Allajbeu
    Naveena Singh
    Anju Sahdev
    Laura Havrilesky
    David E. Cohn
    Nicholas W. Bateman
    Thomas P. Conrads
    Kathleen M. Darcy
    G. Larry Maxwell
    John B. Freymann
    Ozan Öktem
    James D. Brenton
    Evis Sala
    Carola-Bibiane Schönlieb
    European Radiology Experimental, 7
  • [35] Coronary Artery Disease: The View from Intravascular Ultrasound
    Steven E. Nissen
    E. Murat Tuzcu
    Journal of Thrombosis and Thrombolysis, 1998, 5 (Suppl 2) : S99 - S111
  • [36] Current Use of Intravascular Ultrasound in Coronary Artery Disease
    Hassan, Ahmed
    Dohi, Tomotaka
    Daida, Hiroyuki
    CLINICAL MEDICINE INSIGHTS-THERAPEUTICS, 2016, 8 : 45 - 51
  • [37] Deep learning-based plaque quantification from coronary computed tomography angiography: external validation and comparison with intravascular ultrasound
    Lin, A.
    Manral, N.
    McElhinney, P.
    Killekar, A.
    Matsumoto, H.
    Cadet, S.
    Achenbach, S.
    Nicholls, S. J.
    Wong, D. T.
    Berman, D.
    Dweck, M.
    Newby, D. E.
    Williams, M. C.
    Slomka, P. J.
    Dey, D.
    EUROPEAN HEART JOURNAL, 2021, 42 : 161 - 161
  • [38] The feasibility of early detecting coronary artery disease using deep learning-based algorithm based on electrocardiography
    Tang, Panli
    Wang, Qi
    Ouyang, Hua
    Yang, Songran
    Hua, Ping
    AGING-US, 2023, 15 (09): : 3524 - 3537
  • [39] CORRELATION OF LONGITUDINAL INTRAVASCULAR ULTRASOUND DATA FOR THE CLINICAL ASSESSMENT OF CORONARY ARTERY DISEASE PROGRESSION
    Timmins, Lucas H.
    Suever, Jonathan D.
    Eshtehardi, Parham
    McDaniel, Michael C.
    Samady, Habib
    Oshinski, John N.
    Giddens, Don P.
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE, PTS A AND B, 2012, : 95 - 96
  • [40] Deep learning-based pelvic levator hiatus segmentation from ultrasound images
    Huang, Zeping
    Qu, Enze
    Meng, Yishuang
    Zhang, Man
    Wei, Qiuwen
    Bai, Xianghui
    Zhang, Xinling
    EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2022, 9