Locating subsets of a Hilbert space

被引:6
|
作者
Ishihara, H [1 ]
机构
[1] Japan Adv Inst Sci & Technol, Sch Informat Sci, Tatsunokuchi, Ishikawa 9231292, Japan
关键词
constructive; locatedness; weakly totally boundedness; convexity;
D O I
10.1090/S0002-9939-00-05674-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with locatedness of convex subsets in inner product and Hilbert spaces which plays a crucial role in the constructive validity of many important theorems of analysis.
引用
收藏
页码:1385 / 1390
页数:6
相关论文
共 50 条
  • [41] QUASITRIANGULARITY IN HILBERT SPACE
    APOSTOL, C
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 22 (09) : 817 - 825
  • [42] On the quantumness of a Hilbert space
    Fuchs, CA
    QUANTUM INFORMATION & COMPUTATION, 2004, 4 (6-7) : 467 - 478
  • [43] OPERATORS ON A HILBERT SPACE
    CHERNOFF, PR
    WATERHOU.WC
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (01): : 87 - &
  • [44] SOM IN HILBERT SPACE
    Snor, J.
    Kukal, J.
    Van Tran, Q.
    NEURAL NETWORK WORLD, 2019, 29 (01) : 19 - 31
  • [45] BASES IN HILBERT SPACE
    DAVIS, WJ
    PACIFIC JOURNAL OF MATHEMATICS, 1968, 26 (03) : 441 - &
  • [46] On contractions in Hilbert space
    Nagy, Bela
    ACTA SCIENTIARUM MATHEMATICARUM, 2013, 79 (1-2): : 235 - 251
  • [47] Voyaging in Hilbert space
    Wilczek, F
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (9-11): : 769 - 770
  • [48] STATE IN HILBERT SPACE
    SAEKS, R
    SIAM REVIEW, 1973, 15 (02) : 283 - 308
  • [49] Is Hilbert space discrete?
    Buniy, RV
    Hsu, SDH
    Zee, A
    PHYSICS LETTERS B, 2005, 630 (1-2) : 68 - 72
  • [50] MANIFOLDS IN HILBERT SPACE
    TANIMOTO, TT
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (02) : 133 - 133