Deep learning-driven scaffold hopping in the discovery of Akt kinase inhibitors

被引:6
|
作者
Wang, Zuqin [1 ]
Ran, Ting [2 ]
Xu, Fang [1 ]
Wen, Chang [2 ]
Song, Shukai [1 ]
Zhou, Yang [1 ]
Chen, Hongming [2 ]
Lu, Xiaoyun [1 ]
机构
[1] Jinan Univ, Coll Pharm, 601 Huangpu Ave West, Guangzhou 510632, Peoples R China
[2] Bioland Lab Guangzhou Regenerat Med & Hlth Guangd, Guangzhou 510530, Peoples R China
基金
中国国家自然科学基金;
关键词
PROGRAM; DESIGN; FINGERPRINTS; FRAGMENT; PATHWAY; CANCER;
D O I
10.1039/d1cc03392a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Scaffold hopping has been widely used in drug discovery and is a topic of high interest. Here a deep conditional transformer neural network, SyntaLinker, was applied for the scaffold hopping of a phase III clinical Akt inhibitor, AZD5363. A number of novel scaffolds were generated and compound 1a as a proof-of-concept was synthesized and validated by biochemical assay. Further structure-based optimization of 1a led to a novel Akt inhibitor with high potency (Akt1 IC50 = 88 nM) and in vitro antitumor activities.
引用
收藏
页码:10588 / 10591
页数:4
相关论文
共 50 条
  • [1] Kinase Inhibitor Scaffold Hopping with Deep Learning Approaches
    Hu, Lizhao
    Yang, Yuyao
    Zheng, Shuangjia
    Xu, Jun
    Ran, Ting
    Chen, Hongming
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (10) : 4900 - 4912
  • [2] KUALA: a machine learning-driven framework for kinase inhibitors repositioning
    De Simone, Giada
    Sardina, Davide Stefano
    Gulotta, Maria Rita
    Perricone, Ugo
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] KUALA: a machine learning-driven framework for kinase inhibitors repositioning
    Giada De Simone
    Davide Stefano Sardina
    Maria Rita Gulotta
    Ugo Perricone
    Scientific Reports, 12
  • [4] Deep Learning-driven research for drug discovery: Tackling Malaria
    Neves, Bruno J.
    Braga, Rodolpho C.
    Alves, Vinicius M.
    Lima, Marilia N. N.
    Cassiano, Gustavo C.
    Muratov, Eugene N.
    Costa, Fabio T. M.
    Andrade, Carolina Horta
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (02)
  • [5] A Review on Deep Learning-driven Drug Discovery: Strategies, Tools and Applications
    Sumathi, Sundaravadivelu
    Suganya, Kanagaraj
    Swathi, Kandasamy
    Sudha, Balraj
    Poornima, Arumugam
    Varghese, Chalos Angel
    Aswathy, Raghu
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (13) : 1013 - 1025
  • [6] Computational discovery of novel FYN kinase inhibitors: a cheminformatics and machine learning-driven approach to targeted cancer and neurodegenerative therapy
    Gopal, Dhanushya
    Muthuraj, Rajesh
    Balaya, Rex Devasahayam Arokia
    Kanekar, Saptami
    Ahmed, Iqrar
    Chandrasekaran, Jaikanth
    CURRENT SCIENCE, 2024, 126 (09):
  • [7] Deep Learning-Driven Library Design for the De Novo Discovery of Bioactive Thiopeptides
    Chang, Jun Shi
    Vinogradov, Alexander A.
    Zhang, Yue
    Goto, Yuki
    Suga, Hiroaki
    ACS CENTRAL SCIENCE, 2023, 9 (11) : 2150 - 2160
  • [8] Machine learning-driven new material discovery
    Cai, Jiazhen
    Chu, Xuan
    Xu, Kun
    Li, Hongbo
    Wei, Jing
    NANOSCALE ADVANCES, 2020, 2 (08): : 3115 - 3130
  • [9] Scaffold and Parasite Hopping: Discovery of New Protozoal Proliferation Inhibitors
    Singh, Baljinder
    Bernatchez, Jean A.
    McCall, Laura-Isobel
    Calvet, Claudia M.
    Ackermann, Jasmin
    Souza, Julia M.
    Thomas, Diane
    Silva, Everton M.
    Bachovchin, Kelly A.
    Klug, Dana M.
    Jalani, Hitesh B.
    Bag, Seema
    Buskes, Melissa J.
    Leed, Susan E.
    Roncal, Norma E.
    Penn, Erica C.
    Erath, Jessey
    Rodriguez, Ana
    Sciotti, Richard J.
    Campbell, Robert F.
    McKerrow, James
    Siqueira-Neto, Jair L.
    Ferrins, Lori
    Pollastri, Michael P.
    ACS MEDICINAL CHEMISTRY LETTERS, 2020, 11 (03): : 249 - 257
  • [10] Discovery and optimization of selective RET inhibitors via scaffold hopping
    Luo, Zhibo
    Wang, Lingli
    Fu, Zhifei
    Shuai, Bin
    Luo, Miaorong
    Hu, Guoping
    Chen, Jian
    Sun, Jikui
    Wang, Jiansong
    Li, Jian
    Chen, Shuhui
    Zhang, Yang
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2021, 47