Deep Learning-Driven Library Design for the De Novo Discovery of Bioactive Thiopeptides

被引:8
|
作者
Chang, Jun Shi [1 ]
Vinogradov, Alexander A. [1 ]
Zhang, Yue [1 ]
Goto, Yuki [1 ]
Suga, Hiroaki [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Chem, Bunkyo Ku, Tokyo 1130033, Japan
基金
日本学术振兴会;
关键词
KINASE; 4; PEPTIDE; BIOSYNTHESIS; RECEPTOR; GENERATION;
D O I
10.1021/acscentsci.3c00957
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Broad substrate tolerance of ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic enzymes has allowed numerous strategies for RiPP engineering. However, despite relaxed specificities, exact substrate preferences of RiPP enzymes are often difficult to pinpoint. Thus, when designing combinatorial libraries of RiPP precursors, balancing the compound diversity with the substrate fitness can be challenging. Here, we employed a deep learning model to streamline the design of mRNA display libraries. Using an in vitro reconstituted thiopeptide biosynthesis platform, we performed mRNA display-based profiling of substrate fitness for the biosynthetic pathway involving five enzymes to train an accurate deep learning model. We then utilized the model to design optimal mRNA libraries and demonstrated their utility in affinity selections against IRAK4 kinase and the TLR10 cell surface receptor. The selections led to the discovery of potent thiopeptide ligands against both target proteins (K-D up to 1.3 nM for the best compound against IRAK4 and 300 nM for TLR10). The IRAK4-targeting compounds also inhibited the kinase at single-digit mu M concentrations in vitro, exhibited efficient internalization into HEK293H cells, and suppressed NF-kB-mediated signaling in cells. Altogether, the developed approach streamlines the discovery of pseudonatural RiPPs with de novo designed biological activities and favorable pharmacological properties.
引用
收藏
页码:2150 / 2160
页数:11
相关论文
共 50 条
  • [1] Deep Learning-Driven Design of Robot Mechanisms
    Purwar, Anurag
    Chakraborty, Nilanjan
    [J]. JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2023, 23 (06)
  • [2] Deep Learning-driven research for drug discovery: Tackling Malaria
    Neves, Bruno J.
    Braga, Rodolpho C.
    Alves, Vinicius M.
    Lima, Marilia N. N.
    Cassiano, Gustavo C.
    Muratov, Eugene N.
    Costa, Fabio T. M.
    Andrade, Carolina Horta
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (02)
  • [3] Deep learning-driven scaffold hopping in the discovery of Akt kinase inhibitors
    Wang, Zuqin
    Ran, Ting
    Xu, Fang
    Wen, Chang
    Song, Shukai
    Zhou, Yang
    Chen, Hongming
    Lu, Xiaoyun
    [J]. CHEMICAL COMMUNICATIONS, 2021, 57 (81) : 10588 - 10591
  • [4] A Review on Deep Learning-driven Drug Discovery: Strategies, Tools and Applications
    Sumathi, Sundaravadivelu
    Suganya, Kanagaraj
    Swathi, Kandasamy
    Sudha, Balraj
    Poornima, Arumugam
    Varghese, Chalos Angel
    Aswathy, Raghu
    [J]. CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (13) : 1013 - 1025
  • [5] A Compact Reprogrammed Genetic Code for De Novo Discovery of Proteolytically Stable Thiopeptides
    Vinogradov, Alexander A.
    Zhang, Yue
    Hamada, Keisuke
    Kobayashi, Shunsuke
    Ogata, Kazuhiro
    Sengoku, Toru
    Goto, Yuki
    Suga, Hiroaki
    [J]. Journal of the American Chemical Society, 1600, 146 (12): : 8058 - 8070
  • [6] A Compact Reprogrammed Genetic Code for De Novo Discovery of Proteolytically Stable Thiopeptides
    Vinogradov, Alexander A.
    Zhang, Yue
    Hamada, Keisuke
    Kobayashi, Shunsuke
    Ogata, Kazuhiro
    Sengoku, Toru
    Goto, Yuki
    Suga, Hiroaki
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (12) : 8058 - 8070
  • [7] Deep learning-driven fragment ion series classification enables highly precise and sensitive de novo peptide sequencing
    Daniela Klaproth-Andrade
    Johannes Hingerl
    Yanik Bruns
    Nicholas H. Smith
    Jakob Träuble
    Mathias Wilhelm
    Julien Gagneur
    [J]. Nature Communications, 15 (1)
  • [8] Deep learning-driven fragment ion series classification enables highly precise and sensitive de novo peptide sequencing
    Klaproth-Andrade, Daniela
    Hingerl, Johannes
    Bruns, Yanik
    Smith, Nicholas H.
    Trauble, Jakob
    Wilhelm, Mathias
    Gagneur, Julien
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [9] DOGS: Reaction-Driven de novo Design of Bioactive Compounds
    Hartenfeller, Markus
    Zettl, Heiko
    Walter, Miriam
    Rupp, Matthias
    Reisen, Felix
    Proschak, Ewgenij
    Weggen, Sascha
    Stark, Holger
    Schneider, Gisbert
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (02)
  • [10] Machine learning-driven new material discovery
    Cai, Jiazhen
    Chu, Xuan
    Xu, Kun
    Li, Hongbo
    Wei, Jing
    [J]. NANOSCALE ADVANCES, 2020, 2 (08): : 3115 - 3130