Structure, Properties, and Phase Transitions of Melt-Spun Poly(vinylidene fluoride) Fibers

被引:29
|
作者
Steinmann, W. [1 ]
Walter, S. [1 ]
Seide, G. [1 ]
Gries, T. [1 ]
Roth, G. [2 ]
Schubnell, M. [3 ]
机构
[1] RWTH Aachen ITA, Inst Text Tech, D-52056 Aachen, Germany
[2] RWTH Aachen XTAL, Inst Kristallog, D-52056 Aachen, Germany
[3] Mettler Toledo GmbH, CH-8603 Schwerzenbach, Switzerland
关键词
poly(vinylidene fluoride); fiber; phase transition; CRYSTAL-STRUCTURE; PVDF; MORPHOLOGY; FILMS;
D O I
10.1002/app.33087
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Three different experimental techniques were used to study structural phase transitions in melt-spun poly(vinylidene fluoride) fibers, which were produced with different process parameters and processed in the draw-winding process at different temperatures and draw ratios. The fibers are examined with the help of wide-angle X-ray diffraction at elevated temperatures, differential scanning calorimetry with stochastic temperature modulation, and dynamic mechanical analysis. An oriented mesophase and deformed crystal structures can be observed in all fibers and assigned to the mechanical stress occurring in the processes. Furthermore, several phase transitions during melting and two mechanical relaxation processes could be detected. The observed transitions affect the crystal geometry, the orientation distribution, anisotropic thermal expansion, and the mechanic response of the fiber samples. The relaxation processes can be related with an increasing amount of crystalline beta-phase in fibers drawn at different temperatures. The detailed information about phase transitions and the related temperatures are used to produce fibers with an extended amount of b-phase crystallites, which are responsible for piezoelectric properties of the material. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 21-35, 2011
引用
收藏
页码:21 / 35
页数:15
相关论文
共 50 条
  • [31] MELT-SPUN NONCIRCULAR CARBON-FIBERS
    EDIE, DD
    FOX, NK
    BARNETT, BC
    FAIN, CC
    CARBON, 1986, 24 (04) : 477 - 482
  • [32] New developments in melt-spun elastane fibers
    Hagen, R.
    Hess, C.
    Chemical Fibers International, 1999, 49 (02):
  • [33] Melt-spun hollow fibers:: Modeling and experiments
    De Rovère, A
    Shambaugh, RL
    POLYMER ENGINEERING AND SCIENCE, 2001, 41 (07): : 1206 - 1219
  • [34] MECHANISM OF COLD DRAWING IN MELT-SPUN POLY(ETHYLENE TEREPHTHALATE) FIBERS.
    Napolitano, M.J.
    Moet, A.
    Journal of Applied Polymer Science, 1987, 34 (03): : 1285 - 1300
  • [35] Poly(lactic acid) melt-spun fibers reinforced with functionalized cellulose nanocrystals
    Mujica-Garcia, A.
    Hooshmand, S.
    Skrifvars, M.
    Kenny, J. M.
    Oksman, K.
    Peponi, L.
    RSC ADVANCES, 2016, 6 (11): : 9221 - 9231
  • [36] Effect of Drawing Conditions on Crystal Structure and Mechanical Properties of Melt-Spun Polylactic Acid Fibers
    Seungchan Noh
    Wuchang Jung
    Seungbum Sim
    HyunSik Son
    Jae-Hak Choi
    Jaseung Koo
    Fibers and Polymers, 2023, 24 : 483 - 488
  • [37] MORPHOLOGY AND DEFORMATION OF MELT-SPUN POLYETHYLENE FIBERS
    FUNG, PYF
    CARR, SH
    JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS, 1972, B 6 (04): : 621 - &
  • [38] Supramolecular morphology of two-step melt-spun poly(dioxanone) fibers
    Yutaka Kawahara
    Atsushi Nakayama
    Masatoshi Shioya
    Masaki Tsuji
    Hideki Yamane
    Tadahisa Iwata
    Journal of Materials Science, 2012, 47 : 1887 - 1892
  • [39] Phase transitions during stretching of poly(vinylidene fluoride)
    Sajkiewicz, P
    Wasiak, A
    Goclowski, Z
    EUROPEAN POLYMER JOURNAL, 1999, 35 (03) : 423 - 429
  • [40] Morphology and Viscoelastic Properties of Melt-Spun HDPE/Hydrotalcite Nanocomposite Fibers
    Fambri, Luca
    Dabrowska, Izabela
    Ferrara, Giuseppe
    Pegoretti, Alessandro
    POLYMER COMPOSITES, 2016, 37 (01) : 288 - 298