Ferrocene/Phthalimide Ionic Bipolar Redox-Active Molecule for Symmetric Nonaqueous Redox Flow Batteries

被引:20
|
作者
Xu, Donghan [1 ,2 ]
Zhang, Cuijuan [1 ,2 ]
Zhen, Yihan [1 ,2 ]
Li, Yongdan [1 ,2 ,3 ]
机构
[1] Tianjin Univ, State Key Lab Chem Engn, Tianjin Key Lab Appl Catalysis Sci & Technol, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Aalto Univ, Dept Chem & Met Engn, Sch Chem Engn, FI-00076 Aalto, Finland
基金
中国国家自然科学基金;
关键词
energy storage; symmetric nonaqueous redox flow battery; bipolar redox-active organic molecule; solubility; crossover; ferrocene; phthalimide; ELECTROCHEMICAL PROPERTIES; BACKBONE TETHER; ELECTROLYTES; PERFORMANCE; PROGRESS; LIQUID; IMPACT;
D O I
10.1021/acsaem.1c01362
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Symmetric nonaqueous redox flow batteries (NARFBs) that utilize bipolar redox-active organic molecules (BROMs) provide a facile strategy to mitigate the crossover issue. However, their performance has lagged behind due to the low solubility of organic redox species and poor high-current operations. To address these technical hurdles, a series of ionic BROMs based on ferrocene (Fc) and phthalimide (Ph) moieties with fast mass and charge-transfer kinetic are synthesized, which show high solubility and ionic conductivity. Both computational and experimental results show that the extended chain length between phthalimide moiety and quaternary nitrogen atom and the acidity of the solvent play a pivotal part in determining the stability of active materials and thus the cycling stability of NARFB. The assembled symmetric NARFB shows an open-circuit voltage of 2.04 V, cycling capacity retention of 99.8% per cycle, and energy efficiency of 77.0% over 50 cycles at 20 mA cm(-2). Furthermore, the battery yields a peak power density of 110 mW cm(-2) at 90 mA cm(-2), which outperforms most NARFBs. This work demonstrates a promising molecular engineering strategy to improve the cycling stability of BROMs and to enable the high-current operation of symmetric NARFB.
引用
收藏
页码:8045 / 8051
页数:7
相关论文
共 50 条
  • [21] Grafting and Solubilization of Redox-Active Organic Materials for Aqueous Redox Flow Batteries
    Chen, Ruiyong
    Zhang, Peng
    Chang, Zhenjun
    Yan, Junfeng
    Kraus, Tobias
    [J]. CHEMSUSCHEM, 2023, 16 (08)
  • [22] Complexes Containing Redox Noninnocent Ligands for Symmetric, Multielectron Transfer Nonaqueous Redox Flow Batteries
    Cabrera, Pablo J.
    Yang, Xingyi
    Sutti, James A.
    Hawthorne, Krista L.
    Brooner, Rachel E. M.
    Sanford, Melanie S.
    Thompson, Levi T.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (28): : 15882 - 15889
  • [23] Redox active polymers for size-exclusion transport in nonaqueous redox flow batteries
    Gavvalapalli, Nagarjuna
    Hui, Jingshu
    Cheng, Kevin
    Lichtenstein, Timothy
    Shen, Mei
    Moore, Jeffrey
    Rodriguez-Lopez, Joaquin
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [24] Organic redox active polymers for nonaqueous flow cell batteries
    Gavvalapalli, Nagarjuna
    Rodriguez-Lopez, Joaquin
    Moore, Jeffrey S.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [25] Thianthrene-Based Bipolar Redox-Active Molecules Toward Symmetric All-Organic Batteries
    Etkind, Samuel I.
    Lopez, Jeffrey
    Zhu, Yun Guang
    Fang, Jen-Hung
    Ong, Wen Jie
    Shao-Horn, Yang
    Swager, Timothy M.
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (36): : 11739 - 11750
  • [26] Synthesis and Characterization of a Phthalimide-Containing Redox-Active Polymer for High-Voltage Polymer-Based Redox-Flow Batteries
    Winsberg, Jan
    Benndorf, Stefan
    Wild, Andreas
    Hager, Martin D.
    Schubert, Ulrich S.
    [J]. MACROMOLECULAR CHEMISTRY AND PHYSICS, 2018, 219 (04)
  • [27] On Lifetime and Cost of Redox-Active Organics for Aqueous Flow Batteries
    Brushett, Fikile R.
    Aziz, Michael J.
    Rodby, Kara E.
    [J]. ACS ENERGY LETTERS, 2020, 5 (03): : 879 - 884
  • [28] Quinone Redox-active Ionic Liquids
    Doherty, Andrew Patrick
    Patterson, Sean
    Diaconu, Laura
    Graham, Louise
    Barhdadi, Rachid
    Puchelle, Valentin
    Wagner, Klaudia
    Office, David L.
    Chen, Jun
    Wallace, Gordon G.
    [J]. JOURNAL OF THE MEXICAN CHEMICAL SOCIETY, 2015, 59 (04) : 263 - 268
  • [29] Multicore Ferrocene Derivative as a Highly Soluble Cathode Material for Nonaqueous Redox Flow Batteries
    Chen, Hui
    Niu, Zhihui
    Ye, Jing
    Zhang, Changkun
    Zhang, Xiaohong
    Zhao, Yu
    [J]. ACS APPLIED ENERGY MATERIALS, 2021, 4 (01): : 855 - 861
  • [30] Two-electron-active tetracyanoethylene for nonaqueous redox flow batteries
    Wang, Xiao
    Chai, Jingchao
    Devi, Nilakshi
    Lashgari, Amir
    Chaturvedi, Ashwin
    Jiang, Jianbing ''Jimmy''
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (24) : 13867 - 13873