Dirac operators and spectral triples for some fractal sets built on curves

被引:47
|
作者
Christensen, Erik [1 ]
Ivan, Cristina
Lapidus, Michel L.
机构
[1] Univ Copenhagen, Dept Math, DK-2100 Copenhagen, Denmark
[2] Leibniz Univ Hannover, Dept Math, D-30167 Hannover, Germany
[3] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
compact and Hausdorff spaces; Dirac operators; spectral triples; C*-algebras; noncommutative geometry; parameterized graphs; fractals; finitely summable trees; Cayley graphs; Sierpinski gasket; metric; Minkowski and Hausdorff dimensions; complex fractal dimensions; Dixmier trace; Hausdorff measure; geodesic metric; analysis on fractals;
D O I
10.1016/j.aim.2007.06.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct spectral triples and, in particular, Dirac operators, for the algebra of continuous functions on certain compact metric spaces. The triples are countable sums of triples where each summand is based on a curve in the space. Several fractals, like a finitely summable infinite tree and the Sierpinski gasket, fit naturally within our framework. In these cases, we show that our spectral triples do describe the geodesic distance and the Minkowski dimension as well as, more generally, the complex fractal dimensions of the space. Furthermore, in the case of the Sierpinski gasket, the associated Dixmier-type trace coincides with the normalized Hausdorff measure of dimension log 3/log 2. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:42 / 78
页数:37
相关论文
共 50 条
  • [31] SPECTRAL PROPERTIES OF DIRAC OPERATORS WITH SINGULAR POTENTIALS
    KLAUS, M
    WUST, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 72 (01) : 206 - 214
  • [32] Spectral Flow for Dirac Operators with Magnetic Links
    Portmann, Fabian
    Sok, Jeremy
    Solovej, Jan Philip
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) : 1100 - 1167
  • [33] On Spectral Synthesis for Dissipative Dirac Type Operators
    Lunyov, Anton A.
    Malamud, Mark M.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 80 (01) : 79 - 106
  • [34] Spectral Action for Scalar Perturbations of Dirac Operators
    Andrzej Sitarz
    Artur Zając
    Letters in Mathematical Physics, 2011, 98 : 333 - 348
  • [35] Spectral bounds for Dirac operators on open manifolds
    Christian Bär
    Annals of Global Analysis and Geometry, 2009, 36 : 67 - 79
  • [36] On the gluing problem for the spectral invariants of Dirac operators
    Loya, Paul
    Park, Jinsung
    ADVANCES IN MATHEMATICS, 2006, 202 (02) : 401 - 450
  • [37] On Spectral Synthesis for Dissipative Dirac Type Operators
    Anton A. Lunyov
    Mark M. Malamud
    Integral Equations and Operator Theory, 2014, 80 : 79 - 106
  • [38] Spectral Flow for Dirac Operators with Magnetic Links
    Fabian Portmann
    Jérémy Sok
    Jan Philip Solovej
    The Journal of Geometric Analysis, 2020, 30 : 1100 - 1167
  • [39] SPECTRAL THEORY FOR DIRAC OPERATORS WITH A STARK POTENTIAL
    HACHEM, G
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1992, 71 (04): : 293 - 329
  • [40] Universal spectral correlators and massive Dirac operators
    Damgaard, PH
    Nishigaki, SM
    NUCLEAR PHYSICS B, 1998, 518 (1-2) : 495 - 512