Reinforcement learning with orthonormal basis adaptation based on activity-oriented index allocation

被引:0
|
作者
Satoh, Hideki [1 ]
机构
[1] Future Univ Hakodate, Hakodate, Hokkaido 0418655, Japan
关键词
orthonormal basis; function approximation; non-linear; reinforcentent learning; activity;
D O I
10.1093/ietfec/e91-a.4.1169
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
An orthonormal basis adaptation method for function approximation was developed and applied to reinforcement learning with multi-dimensional continuous state space. First, a basis used for linear function approximation of a control function is set to an orthonormal basis. Next, basis elements with small activities are replaced with other candidate elements as learning progresses. As this replacement is repeated, the number of basis elements with large activities increases. Example chaos control problems for multiple logistic maps were solved, demonstrating that the method for adapting an orthonormal basis can modify a basis while holding the orthonormality in accordance with changes in the environment to improve the performance of reinforcement learning and to eliminate the adverse effects of redundant noisy states.
引用
收藏
页码:1169 / 1176
页数:8
相关论文
共 50 条
  • [31] Resource allocation algorithm for MEC based on Deep Reinforcement Learning
    Wang, Yijie
    Chen, Xin
    Chen, Ying
    Du, Shougang
    2021 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE (IPCCC), 2021,
  • [32] Deep Reinforcement Learning for Resource Allocation in Blockchain-based Federated Learning
    Dai, Yueyue
    Yang, Huijiong
    Yang, Huiran
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 179 - 184
  • [33] A Task-oriented Chatbot Based on LSTM and Reinforcement Learning
    Hsueh, Yu-Ling
    Chou, Tai-Liang
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (01)
  • [34] A Task-oriented Chatbot Based on LSTM and Reinforcement Learning
    Chou, Tai-Liang
    Hsueh, Yu-Ling
    NLPIR 2019: 2019 3RD INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL, 2019, : 87 - 91
  • [35] Task-oriented Dialogue System Based on Reinforcement Learning
    Song, Meina
    Chen, Zhongfu
    Niu, Peiqing
    Haihong, E.
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 93 - 98
  • [36] Measurement-based adaptation protocol with quantum reinforcement learning
    Albarran-Arriagada, F.
    Retamal, J. C.
    Solano, E.
    Lamata, L.
    PHYSICAL REVIEW A, 2018, 98 (04)
  • [37] Evolutionary Framework With Reinforcement Learning-Based Mutation Adaptation
    Sallam, Karam M.
    Elsayed, Saber M.
    Chakrabortty, Ripon K.
    Ryan, Michael J.
    IEEE ACCESS, 2020, 8 : 194045 - 194071
  • [38] Skill based transfer learning with domain adaptation for continuous reinforcement learning domains
    Farzaneh Shoeleh
    Masoud Asadpour
    Applied Intelligence, 2020, 50 : 502 - 518
  • [39] Skill based transfer learning with domain adaptation for continuous reinforcement learning domains
    Shoeleh, Farzaneh
    Asadpour, Masoud
    APPLIED INTELLIGENCE, 2020, 50 (02) : 502 - 518
  • [40] Computation offloading and resource allocation strategy based on deep reinforcement learning
    Zeng F.
    Zhang Z.
    Chen Z.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (07): : 124 - 135