Molecular dynamics simulations of side chain liquid crystal polymer molecules in isotropic and liquid-crystalline melts

被引:38
|
作者
Stimson, LM [1 ]
Wilson, MR [1 ]
机构
[1] Univ Durham, Dept Chem, Durham DH1 3LE, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2005年 / 123卷 / 03期
关键词
D O I
10.1063/1.1948376
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A detailed molecular dynamics simulation study is described for a polysiloxane side chain liquid crystal polymer (SCLCP). The simulations use a coarse-grained model composed of a combination of isotropic and anisotropic interaction sites. On cooling from a fully isotropic polymer melt, we see spontaneous microphase separation into polymer-rich and mesogen-rich regions. Upon application of a small aligning potential during cooling, the structures that form on microphase separation anneal to produce a smectic-A phase in which the polymer backbone is largely confined between the smectic layers. Several independent quenches from the melt are described that vary in the strength of the aligning potential and the degree of cooling. In each quench, defects were found where the backbone chains hop from one backbone-rich region to the next by tunneling through the mesogenic layers. As expected, the number of such defects is found to depend strongly on the rate of cooling. In the vicinity of such a defect, the smectic-A structure of the mesogen-rich layers is disrupted to give nematiclike ordering. Additionally, several extensive annealing runs of approximately 40 ns duration have been carried out at the point of microphase separation. During annealing the polymer backbone is seen to be slowly excluded from the mesogenic layers and lie perpendicular to the smectic-A director. These observations agree with previous assumptions about the structure of a SCLCP and with interpretations of x-ray diffraction and small angle neutron scattering data. The flexible alkyl spacers, which link the backbone to the mesogens, are found to form sublayers around the backbone layer. (c) 2005 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 50 条