RENAS: Reinforced Evolutionary Neural Architecture Search

被引:74
|
作者
Chen, Yukang [1 ,2 ]
Meng, Gaofeng [1 ,2 ]
Zhang, Qian [3 ]
Xiang, Shiming [1 ,2 ]
Huang, Chang [3 ]
Mu, Lisen [3 ]
Wang, Xinggang [4 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[3] Horizon Robot, Beijing, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
D O I
10.1109/CVPR.2019.00492
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural Architecture Search (NAS) is an important yet challenging task in network design due to its high computational consumption. To address this issue, we propose the Reinforced Evolutionary Neural Architecture Search (RENAS), which is an evolutionary method with reinforced mutation for NAS. Our method integrates reinforced mutation into an evolution algorithm for neural architecture exploration, in which a mutation controller is introduced to learn the effects of slight modifications and make mutation actions. The reinforced mutation controller guides the model population to evolve efficiently. Furthermore, as child models can inherit parameters from their parents during evolution, our method requires very limited computational resources. In experiments, we conduct the proposed search method on CIFAR-10 and obtain a powerful network architecture, RENASNet. This architecture achieves a competitive result on CIFAR- 10. The explored network architecture is transferable to ImageNet and achieves a new state-of-the-art accuracy, i.e., 75.7% top-1 accuracy with 5.36M parameters on mobile ImageNet. We further test its performance on semantic segmentation with DeepLabv3 on the PASCAL VOC. RENASNet outperforms MobileNet-v1, MobileNet-v2 and NASNet. It achieves 75.83% mIOU without being pretrained on COCO.
引用
收藏
页码:4782 / 4791
页数:10
相关论文
共 50 条
  • [1] ReNAS: Relativistic Evaluation of Neural Architecture Search
    Xu, Yixing
    Wang, Yunhe
    Han, Kai
    Tang, Yehui
    Jui, Shangling
    Xu, Chunjing
    Xu, Chang
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4409 - 4418
  • [2] Evolutionary approximation and neural architecture search
    Pinos, Michal
    Mrazek, Vojtech
    Sekanina, Lukas
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2022, 23 (03) : 351 - 374
  • [3] A Survey on Evolutionary Neural Architecture Search
    Liu, Yuqiao
    Sun, Yanan
    Xue, Bing
    Zhang, Mengjie
    Yen, Gary G.
    Tan, Kay Chen
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (02) : 550 - 570
  • [4] Evolutionary Neural Architecture Search and Applications
    Sun, Yanan
    Zhang, Mengjie
    Yen, Gary G.
    [J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2021, 16 (03) : 8 - 9
  • [5] Evolutionary Recurrent Neural Architecture Search
    Tian, Shuo
    Hu, Kai
    Guo, Shasha
    Li, Shiming
    Wang, Lei
    Xu, Weixia
    [J]. IEEE EMBEDDED SYSTEMS LETTERS, 2021, 13 (03) : 110 - 113
  • [6] Evolutionary approximation and neural architecture search
    Michal Pinos
    Vojtech Mrazek
    Lukas Sekanina
    [J]. Genetic Programming and Evolvable Machines, 2022, 23 : 351 - 374
  • [7] Evolutionary Neural Architecture Search for Transferable Networks
    Zhou, Xun
    Liu, Songbai
    Qin, A. K.
    Tan, Kay Chen
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [8] Guest Editorial Evolutionary Neural Architecture Search
    Sun, Yanan
    Xue, Bing
    Zhang, Mengjie
    Yen, Gary G.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (03) : 566 - 569
  • [9] Evolutionary Neural Architecture Search for Image Restoration
    van Wyk, Gerard Jacques
    Bosman, Anna Sergeevna
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [10] Novelty Driven Evolutionary Neural Architecture Search
    Sinha, Nilotpal
    Chen, Kuan-Wen
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 671 - 674