Evolutionary Recurrent Neural Architecture Search

被引:2
|
作者
Tian, Shuo [1 ]
Hu, Kai [1 ]
Guo, Shasha [1 ]
Li, Shiming [1 ]
Wang, Lei [1 ]
Xu, Weixia [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp Sci & Technol, Changsha 410000, Peoples R China
关键词
Computer architecture; Sociology; Statistics; Microprocessors; Manuals; Training; Computational modeling; Deep learning; evolution algorithm; neural architecture search (NAS); parameter sharing;
D O I
10.1109/LES.2020.3005753
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has promoted remarkable progress in various tasks while the effort devoted to these hand-crafting neural networks has motivated so-called neural architecture search (NAS) to discover them automatically. Recent aging evolution (AE) automatic search algorithm turns to discard the oldest model in population and finds image classifiers beyond manual design. However, it achieves a low speed of convergence. A nonaging evolution (NAE) algorithm tends to neglect the worst architecture in population to accelerate the search process whereas it obtains a lower performance compared with AE. To address this issue, in this letter, we propose to use an optimized evolution algorithm for recurrent NAS (EvoRNAS) by setting a probability epsilon to remove the worst or oldest model in population alternatively, which can balance the performance and time length. Besides, parameter sharing mechanism is introduced in our approach due to the heavy cost of evaluating the candidate models in both AE and NAE. Furthermore, we train the sharing parameters only once instead of many epochs like ENAS, which makes the evaluation of candidate models faster. On Penn Treebank, we first explore different epsilon in EvoRNAS and find the best value suited for the learning task, which is also better than AE and NAE. Second, the optimal cell found by EvoRNAS can achieve state-of-the-art performance within only 0.6 GPU hours, which is 20 x and 40 x faster than ENAS and DARTS. Moreover, the transferability of the learned architecture to WikiText-2 also shows strong performance compared with ENAS or DARTS.
引用
收藏
页码:110 / 113
页数:4
相关论文
共 50 条
  • [1] Multi-objective Evolutionary Neural Architecture Search for Recurrent Neural Networks
    Booysen, Reinhard
    Bosman, Anna Sergeevna
    [J]. NEURAL PROCESSING LETTERS, 2024, 56 (04)
  • [2] Evolutionary approximation and neural architecture search
    Pinos, Michal
    Mrazek, Vojtech
    Sekanina, Lukas
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2022, 23 (03) : 351 - 374
  • [3] A Survey on Evolutionary Neural Architecture Search
    Liu, Yuqiao
    Sun, Yanan
    Xue, Bing
    Zhang, Mengjie
    Yen, Gary G.
    Tan, Kay Chen
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (02) : 550 - 570
  • [4] Evolutionary Neural Architecture Search and Applications
    Sun, Yanan
    Zhang, Mengjie
    Yen, Gary G.
    [J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2021, 16 (03) : 8 - 9
  • [5] Evolutionary approximation and neural architecture search
    Michal Pinos
    Vojtech Mrazek
    Lukas Sekanina
    [J]. Genetic Programming and Evolvable Machines, 2022, 23 : 351 - 374
  • [6] RENAS: Reinforced Evolutionary Neural Architecture Search
    Chen, Yukang
    Meng, Gaofeng
    Zhang, Qian
    Xiang, Shiming
    Huang, Chang
    Mu, Lisen
    Wang, Xinggang
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4782 - 4791
  • [7] Evolutionary Neural Architecture Search for Transferable Networks
    Zhou, Xun
    Liu, Songbai
    Qin, A. K.
    Tan, Kay Chen
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [8] Guest Editorial Evolutionary Neural Architecture Search
    Sun, Yanan
    Xue, Bing
    Zhang, Mengjie
    Yen, Gary G.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (03) : 566 - 569
  • [9] Evolutionary Neural Architecture Search for Image Restoration
    van Wyk, Gerard Jacques
    Bosman, Anna Sergeevna
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [10] Novelty Driven Evolutionary Neural Architecture Search
    Sinha, Nilotpal
    Chen, Kuan-Wen
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 671 - 674