Probability density estimation with data missing at random when covariables are present

被引:18
|
作者
Wang, Qihua [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
inverse probability weighted method; asymptotic normality; mean squared error bound;
D O I
10.1016/j.jspi.2006.10.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper addresses the problem of the probability density estimation in the presence of covariates when data are missing at random (MAR). The inverse probability weighted method is used to define a nonparametric and a semiparametric weighted probability density estimators. A regression calibration technique is also used to define an imputed estimator. It is shown that all the estimators are asymptotically normal with the same asymptotic variance as that of the inverse probability weighted estimator with known selection probability function and weights. Also, we establish the mean squared error (MSE) bounds and obtain the MSE convergence rates. A simulation is carried out to assess the proposed estimators in terms of the bias and standard error. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:568 / 587
页数:20
相关论文
共 50 条
  • [41] Probability density estimation using incomplete data
    Morad, K
    Svrcek, WY
    McKay, I
    [J]. ISA TRANSACTIONS, 2000, 39 (04) : 379 - 399
  • [42] Inverse probability weighted estimation for general missing data problems
    Wooldridge, Jeffrey M.
    [J]. JOURNAL OF ECONOMETRICS, 2007, 141 (02) : 1281 - 1301
  • [43] Large sample results under biased sampling when covariables are present
    de Uña-Alvarez, J
    [J]. STATISTICS & PROBABILITY LETTERS, 2003, 63 (03) : 287 - 293
  • [44] A Model Validation Procedure when Covariate Data are Missing at Random
    Jin, Lei
    Wang, Suojin
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (03) : 403 - 421
  • [45] Robust Optimal Design When Missing Data Happen at Random
    Rui Hu
    Ion Bica
    Zhichun Zhai
    [J]. Journal of Statistical Theory and Practice, 2023, 17
  • [46] Likelihood based frequentist inference when data are missing at random
    Kenward, MG
    Molenberghs, G
    [J]. STATISTICAL SCIENCE, 1998, 13 (03) : 236 - 247
  • [47] Robust Optimal Design When Missing Data Happen at Random
    Hu, Rui
    Bica, Ion
    Zhai, Zhichun
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2023, 17 (03)
  • [48] An equivalence result for moment equations when data are missing at random
    Hristache, Marian
    Patilea, Valentin
    [J]. STATISTICAL THEORY AND RELATED FIELDS, 2019, 3 (02) : 199 - 207
  • [49] Auxiliary Variables in Multiple Imputation When Data Are Missing Not at Random
    Mustillo, Sarah
    Kwon, Soyoung
    [J]. JOURNAL OF MATHEMATICAL SOCIOLOGY, 2015, 39 (02): : 73 - 91
  • [50] Best Probability Density Function for Random Sampled Data
    Jacobs, Donald J.
    [J]. ENTROPY, 2009, 11 (04) : 1001 - 1024