Multivariate Stieltjes type theorems and location of common zeros of multivariate orthogonal polynomials

被引:2
|
作者
Luo, Zhongxuan [1 ]
Meng, Zhaoliang
Liu, Fengshan
机构
[1] Dalian Univ Technol, Dept Math, Dalian 116024, Peoples R China
[2] Delware State Univ, Appl Math Res Ctr, Dover, DE 19901 USA
基金
中国国家自然科学基金;
关键词
multivariate orthogonal polynomials; invariant factor; Stieltjes type theorem; Jacobi matrix; location of common zeros;
D O I
10.1016/j.jmaa.2007.02.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Invariant factors of bivariate orthogonal polynomials inherit most of the properties of univariate orthogonal polynomials and play an important role in the research of Stieltjes type theorems and location of common zeros of bivariate orthogonal polynomials. The aim of this paper is to extend our study of invariant factors from two variables to several variables. We obtain a multivariate Stieltjes type theorem, and the relationships among invariant factors, multivariate orthogonal polynomials and the corresponding Jacobi matrix. We also study the location of common zeros of multivariate orthogonal polynomials and provide some examples of tri-variate.
引用
收藏
页码:127 / 139
页数:13
相关论文
共 50 条
  • [41] Christoffel Functions and Universality in the Bulk for Multivariate Orthogonal Polynomials
    Kroo, A.
    Lubinsky, D. S.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (03): : 600 - 620
  • [42] Three term relations for multivariate Uvarov orthogonal polynomials
    Aktas, Rabia
    Area, Ivan
    Perez, Teresa E.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (07):
  • [43] Dimensionwise multivariate orthogonal polynomials in general probability spaces
    Rahman, Sharif
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
  • [44] Three term relations for multivariate Uvarov orthogonal polynomials
    Rabia Aktaş
    Iván Area
    Teresa E. Pérez
    Computational and Applied Mathematics, 2022, 41
  • [45] Multivariate generalized Bernstein polynomials: identities for orthogonal polynomials of two variables
    Stanisław Lewanowicz
    Paweł Woźny
    Iván Area
    Eduardo Godoy
    Numerical Algorithms, 2008, 49 : 199 - 220
  • [46] Three term recurrence for the evaluation of multivariate orthogonal polynomials
    Barrio, Roberto
    Manuel Pena, Juan
    Sauer, Tomas
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (02) : 407 - 420
  • [47] Multivariate imprecise Sklar type theorems
    Omladic, Matjaz
    Stopar, Nik
    FUZZY SETS AND SYSTEMS, 2022, 428 : 80 - 101
  • [48] Interlacing theorems for the zeros of some orthogonal polynomials from different sequences
    Jordaan, Kerstin
    Tookos, Ferenc
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (08) : 2015 - 2022
  • [49] Location of Zeros of Lacunary-Type Polynomials
    Irfan Ahmad Wani
    Mohammad Ibrahim Mir
    Ishfaq Nazir
    Vestnik St. Petersburg University, Mathematics, 2023, 56 : 57 - 67
  • [50] Location Of The Zeros Of Lacunary-Type Polynomials
    Wani, Irfan Ahmad
    Mir, Mohammad Ibrahim
    Nazir, Ishfaq
    APPLIED MATHEMATICS E-NOTES, 2023, 23 : 49 - 59