Motor Imagery Signal Classification Using Spiking Neural Network

被引:0
|
作者
Niranjani, Naga A. [1 ]
Sivachitra, M. [1 ]
机构
[1] Kongu Engn Coll, Dept EEE, Perundurai, India
关键词
Spiking; planning and relaxed dataset; classification; online meta neuron; LEARNING ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A brain-computer interface (BCI) is both a hardware and software based communication system that allows cerebral activity to control computers or external devices. The instantaneous aim of BCI research is to offer communication abilities to severely disabled people who are 'locked in' by neurological disorders such as amyotrophic lateral sclerosis, brain stem stroke or spinal cord injury. "Electroencephalography", a non-invasive approach, has been widely used for BCI system. In recent times, several classifiers have been used inanalyzing EEG signals measured in the planning and relaxed state. The key work addressed is the classification of EEG signals (motor imagery signals) using spiking neural classifier. The dataset (Planning and relaxed state data) is a benchmark data taken from UCI (University of California, Irvine) repository. Online Meta-neuron based Learning Algorithm (OMLA), is a newlyevolved networkapplied for the EEG signal classification task. Spiking neural classifierperforms better than the other classifiers due to the use of both global and local information of the network.
引用
收藏
页码:901 / 904
页数:4
相关论文
共 50 条
  • [1] Motor Imagery Task Classification in EEG Signals with Spiking Neural Network
    Virgilio, Carlos D. G.
    Sossa, Humberto
    Antelis, Javier M.
    Falcon, Luis E.
    [J]. PATTERN RECOGNITION, MCPR 2019, 2019, 11524 : 14 - 24
  • [2] A convolutional spiking neural network with adaptive coding for motor imagery classification
    Liao, Xiaojian
    Wu, Yuli
    Wang, Zi
    Wang, Deheng
    Zhang, Hongmiao
    [J]. NEUROCOMPUTING, 2023, 549
  • [3] Motor Imagery EEG Signal Classification Using Optimized Convolutional Neural Network
    Thiyam, Deepa Beeta
    Raymond, Shelishiyah
    Avasarala, Padmanabha Sarma
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (08): : 273 - 279
  • [4] Motor imagery EEG classification using feedforward neural network
    Majoros, Tamas
    Oniga, Stefan
    Xie, Yu
    [J]. ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 53 : 235 - 244
  • [5] Data Augmentation for Motor Imagery Signal Classification Based on a Hybrid Neural Network
    Zhang, Kai
    Xu, Guanghua
    Han, Zezhen
    Ma, Kaiquan
    Zheng, Xiaowei
    Chen, Longting
    Duan, Nan
    Zhang, Sicong
    [J]. SENSORS, 2020, 20 (16) : 1 - 20
  • [6] Motor Imagery EEG Signal Classification Using Deep Neural Networks
    Nakra, Abhilasha
    Duhan, Manoj
    [J]. COMPUTING SCIENCE, COMMUNICATION AND SECURITY, 2022, 1604 : 128 - 140
  • [7] EEG Motor Imagery Classification using Fusion Convolutional Neural Network
    Zouch, Wassim
    Echtioui, Amira
    [J]. ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1, 2022, : 548 - 553
  • [8] Effects of Input Neuron Mapping Coordinates in Spiking Neural Network on the Motor Imagery EEG Signals Classification
    Zhan, Gege
    Su, Haolong
    Wang, Pengchao
    Niu, Lan
    Bin, Jianxiong
    Mu, Wei
    Zhang, Xueze
    Jiang, Haifeng
    Zhang, Lihua
    Kang, Xiaoyang
    [J]. 2023 11TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE, BCI, 2023,
  • [9] Convolutional neural network with support vector machine for motor imagery EEG signal classification
    Amira Echtioui
    Wassim Zouch
    Mohamed Ghorbel
    Chokri Mhiri
    [J]. Multimedia Tools and Applications, 2023, 82 : 45891 - 45911
  • [10] Convolutional neural network with support vector machine for motor imagery EEG signal classification
    Echtioui, Amira
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45891 - 45911