Insights into the Mechanism of Pore Opening of Acid-sensing Ion Channel 1A

被引:30
|
作者
Tolino, Lindsey A. [1 ]
Okumura, Sora [1 ]
Kashlan, Ossama B. [1 ]
Carattino, Marcelo D. [1 ,2 ]
机构
[1] Univ Pittsburgh, Renal Electrolyte Div, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Dept Cell Biol & Physiol, Pittsburgh, PA 15261 USA
基金
美国国家卫生研究院;
关键词
CONFORMATIONAL-CHANGE; EXTRACELLULAR DOMAIN; DESENSITIZATION; KINETICS; SITES;
D O I
10.1074/jbc.M110.202366
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acid-sensing ion channels (ASICs) are trimeric cation channels that undergo activation and desensitization in response to extracellular acidification. The underlying mechanism coupling proton binding in the extracellular region to pore gating is unknown. Here we probed the reactivity toward methanethiosulfonate (MTS) reagents of channels with cysteine-substituted residues in the outer vestibule of the pore of ASIC1a. We found that positively-charged MTS reagents trigger pore opening of G428C. Scanning mutagenesis of residues in the region preceding the second transmembrane spanning domain indicated that the MTSET-modified side chain of Cys at position 428 interacts with Tyr-424. This interaction was confirmed by double-mutant cycle analysis. Strikingly, Y424C-G428C monomers were associated by intersubunit disulfide bonds and were insensitive to MTSET. Despite the spatial constraints introduced by these intersubunit disulfide bonds in the outer vestibule of the pore, Y424C-G428C transitions between the resting, open, and desensitized states in response to extracellular acidification. This finding suggests that the opening of the ion conductive pathway involves coordinated rotation of the second transmembrane-spanning domains.
引用
收藏
页码:16297 / 16307
页数:11
相关论文
共 50 条
  • [21] Glutamate potentiates heterologously expressed homomeric acid-sensing ion channel 1a
    Shteinikov, Vasilii
    Evlanenkov, Konstantin
    Bolshakov, Konstantin
    Tikhonov, Denis
    SYNAPSE, 2022, 76 (5-6)
  • [22] Activation of Acid-sensing Ion Channel 1a (ASIC1a) by Surface Trafficking
    Chai, Sunghee
    Li, Minghua
    Branigan, Deborah
    Xiong, Zhi-Gang
    Simon, Roger P.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (17) : 13002 - 13011
  • [23] Mechanism of acid-sensing ion channel modulation by Hi1a
    Berger, Kyle D.
    MacLean, David M.
    JOURNAL OF GENERAL PHYSIOLOGY, 2024, 156 (12):
  • [24] Gating Mechanism and Movements in Acid Sensing Ion Channel 1A
    Ramaswamy, Swarna S.
    MacLean, David
    Sanabria, Hugo
    Jayaraman, Vasanthi
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 288A - 288A
  • [25] Evidence for role of acid-sensing ion channel 1a in chronic rhinosinusitis with nasal polyps
    Tang, Ru
    Ba, Guangyi
    Li, Mingxian
    Li, Zhipeng
    Ye, Haibo
    Lin, Hai
    Zhang, Weitian
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2021, 278 (07) : 2379 - 2386
  • [26] Acid-sensing ion channel 1a regulates the specificity of reconsolidation of conditioned threat responses
    Koffman, Erin E.
    Kruse, Charles M.
    Singh, Kritika
    Naghavi, Farzaneh Sadat
    Curtis, Melissa A.
    Egbo, Jennifer
    Houdi, Mark
    Lin, Boren
    Lu, Hui
    Debiec, Jacek
    Du, Jianyang
    JCI INSIGHT, 2022, 7 (04)
  • [27] Evidence for role of acid-sensing ion channel 1a in chronic rhinosinusitis with nasal polyps
    Ru Tang
    Guangyi Ba
    Mingxian Li
    Zhipeng Li
    Haibo Ye
    Hai Lin
    Weitian Zhang
    European Archives of Oto-Rhino-Laryngology, 2021, 278 : 2379 - 2386
  • [28] Astrocytic Acid-Sensing Ion Channel 1a Contributes to the Development of Epileptic Cognitive Impairment
    Li, Wen
    Zhou, Huimin
    Li, Xiaona
    Hu, Gengyao
    Wei, Dong
    BIOMOLECULES, 2025, 15 (01)
  • [29] Translational Strategies for Neuroprotection in Ischemic Stroke—Focusing on Acid-Sensing Ion Channel 1a
    Zaven O’Bryant
    Kiara T. Vann
    Zhi-Gang Xiong
    Translational Stroke Research, 2014, 5 : 59 - 68
  • [30] Acid-sensing ion channel (ASIC) 1a undergoes a height transition in response to acidification
    Yokokawa, Masatoshi
    Carnally, Stewart M.
    Henderson, Robert M.
    Takeyasu, Kunio
    Edwardson, J. Michael
    FEBS LETTERS, 2010, 584 (14): : 3107 - 3110