Image-based high-throughput quantification of cellular fat accumulation

被引:20
|
作者
Dragunow, Mike [1 ]
Cameron, Rachel
Narayan, Pritika
O'Carroll, Simon
机构
[1] Univ Auckland, Fac Med & Hlth Sci, Dept Pharmacol, Auckland, New Zealand
[2] Univ Auckland, Fac Med & Hlth Sci, Dept Anat, Auckland, New Zealand
[3] Univ Auckland, Fac Med & Hlth Sci, Natl Res Ctr Growth & Dev, Auckland, New Zealand
关键词
image analysis; lipids; high-content screening;
D O I
10.1177/1087057107306502
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A number of biochemical methods are available for measuring fat accumulation in cell culture. The authors report a simple image-based method for measuring fat accumulation in adipocytes using a combination of high-throughput brightfield microscopy and image analysis, which was validated biochemically using Oil-Red-O. The quickest and most accurate method of analysis was one based on thresholding brightfield images and determining the area of fat droplets per image. Thus, the authors have developed a simple high-throughput, label-free method for measuring fat accumulation that is applicable to any cell or tissue type where fat droplets are visible under light microscopy.
引用
收藏
页码:999 / 1005
页数:7
相关论文
共 50 条
  • [1] High-Throughput Image-Based Aggresome Quantification
    Lesire, Laetitia
    Chaput, Ludovic
    Cruz De Casas, Paulina
    Rousseau, Fanny
    Piveteau, Catherine
    Dumont, Julie
    Pointu, David
    Deprez, Benoit
    Leroux, Florence
    [J]. SLAS DISCOVERY, 2020, 25 (07) : 783 - 791
  • [2] High-Throughput Image-Based Quantification of Mitochondrial DNA Synthesis and Distribution
    Borowski, Lukasz S.
    Kasztelan, Karolina
    Czerwinska-Kostrzewska, Jolanta
    Szczesny, Roman J.
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (195):
  • [3] A method for high-throughput image-based antifungal screening
    Sabburg, Rosalie
    Gregson, Aphrika
    Urquhart, Andrew S.
    Aitken, Elizabeth A. B.
    Smith, Linda
    Thatcher, Louise F.
    Gardiner, Donald M.
    [J]. JOURNAL OF MICROBIOLOGICAL METHODS, 2021, 190
  • [4] Image-Based High-Throughput Phenotyping in Horticultural Crops
    Abebe, Alebel Mekuriaw
    Kim, Younguk
    Kim, Jaeyoung
    Kim, Song Lim
    Baek, Jeongho
    [J]. PLANTS-BASEL, 2023, 12 (10):
  • [5] Image-Based High-Throughput Field Phenotyping of Crop Roots
    Bucksch, Alexander
    Burridge, James
    York, Larry M.
    Das, Abhiram
    Nord, Eric
    Weitz, Joshua S.
    Lynch, Jonathan P.
    [J]. PLANT PHYSIOLOGY, 2014, 166 (02) : 470 - 486
  • [6] A comparative study of cell classifiers for image-based high-throughput screening
    Syed Saiden Abbas
    Tjeerd MH Dijkstra
    Tom Heskes
    [J]. BMC Bioinformatics, 15
  • [7] Automated Machine Learning for High-Throughput Image-Based Plant Phenotyping
    Koh, Joshua C. O.
    Spangenberg, German
    Kant, Surya
    [J]. REMOTE SENSING, 2021, 13 (05) : 1 - 19
  • [8] An Image-based Dynamic High-throughput Analysis of Adherent Cell Migration
    Sun, Meng
    Rethi, Bence
    Krishnamurthy, Akilan
    Joshua, Vijay
    Wahamaa, Heidi
    Catrina, Sergiu-Bogdan
    Catrina, Anca
    [J]. BIO-PROTOCOL, 2021, 11 (06):
  • [9] A novel phenotypic dissimilarity method for image-based high-throughput screens
    Xian Zhang
    Michael Boutros
    [J]. BMC Bioinformatics, 14
  • [10] High-throughput image-based monitoring of cell aggregation and microspheroid formation
    Deckers, Thomas
    Lambrechts, Toon
    Viazzi, Stefano
    Hall, Gabriella Nilsson
    Papantoniou, Ioannis
    Bloemen, Veerle
    Aerts, Jean-Marie
    [J]. PLOS ONE, 2018, 13 (06):