Stability of Mixed Additive-Quadratic and Additive-Drygas Functional Equations

被引:1
|
作者
Choi, Chang-Kwon [1 ,2 ]
Lee, Bogeun [3 ,4 ]
机构
[1] Kunsan Natl Univ, Dept Math, Gunsan 54150, South Korea
[2] Kunsan Natl Univ, Hwangrong Talent Educ Inst, Gunsan 54150, South Korea
[3] Chonbuk Natl Univ, Dept Math, Jeonju 54896, South Korea
[4] Chonbuk Natl Univ, Inst Pure & Appl Math, Jeonju 54896, South Korea
关键词
Baire category theorem; Hyers-Ulam stability; Additive; Quadratic; Drygas; Functional equation; Lebesgue measure zero; HYERS-ULAM STABILITY; RESTRICTED DOMAINS; JENSEN; MAPPINGS; SET;
D O I
10.1007/s00025-020-1163-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the Baire category theorem we investigate the Hyers-Ulam stability problem of mixed additive-quadratic and additive-Drygas functional equations 2f(x + y) + f(x - y) - 3f(x) - 3f(y) = 0, 2f(x + y) + f(x - y) - 3f(x) - 2f(y) - f(-y) = 0 on a set of Lebesgue measure zero. As a consequence, we obtain asymptotic behaviors of the functional equations.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Alienation of the Quadratic and Additive Functional Equations
    Adam, M.
    [J]. ANALYSIS MATHEMATICA, 2019, 45 (03) : 449 - 460
  • [42] ADDITIVE-QUADRATIC rho-FUNCTIONAL INEQUALITIES IN FUZZY BANACH SPACES
    Lee, Sung Jin
    Seo, Jeong Pil
    [J]. JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2016, 23 (02): : 163 - 179
  • [43] ADDITIVE-QUADRATIC p-FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES
    Yun, Sungsik
    Lee, Jung Rye
    Shin, Dong Yun
    [J]. JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2016, 23 (03): : 247 - 263
  • [44] Intuitionistic random almost additive-quadratic mappings
    Choonkil Park
    Madjid Eshaghi Gordji
    Masumeh Ghanifard
    Hamid Khodaei
    [J]. Advances in Difference Equations, 2012
  • [45] A generalized mixed type of quartic–cubic–quadratic–additive functional equations
    T. Z. Xu
    J. M. Rassias
    W. X. Xu
    [J]. Ukrainian Mathematical Journal, 2011, 63 : 461 - 479
  • [46] THE STABILITY OF ADDITIVE (α, β)-FUNCTIONAL EQUATIONS
    Lu, Ziying
    Lu, Gang
    Jin, Yuanfeng
    Park, Choonkil
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (06): : 2295 - 2307
  • [47] A General Uniqueness Theorem concerning the Stability of Additive and Quadratic Functional Equations
    Lee, Yang-Hi
    Jung, Soon-Mo
    [J]. JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [48] A Characterization of Multi-Mixed Additive-Quadratic Mappings and a Fixed Point Application
    Falihi, S.
    Bodaghi, A.
    Shojaee, B.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2020, 55 (04): : 235 - 247
  • [49] Solution and Stability of a Mixed Type Additive, Quadratic, and Cubic Functional Equation
    Gordji, M. Eshaghi
    Gharetapeh, S. Kaboli
    Rassias, J. M.
    Zolfaghari, S.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [50] Solution and Stability of a Mixed Type Additive, Quadratic, and Cubic Functional Equation
    M. Eshaghi Gordji
    S. Kaboli Gharetapeh
    J. M. Rassias
    S. Zolfaghari
    [J]. Advances in Difference Equations, 2009