Some permutations on Dyck words

被引:1
|
作者
Barnabei, Marilena [1 ]
Bonetti, Flavio [1 ]
Castronuovo, Niccolo [2 ]
Cori, Robert [3 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
[2] Univ Ferrara, Dipartimento Matemat, I-44100 Ferrara, Italy
[3] LaBRI Univ Bordeaux 1, Bordeaux, France
关键词
Dyck word; Dyck path; Permutation; PATHS; INVOLUTION; CONSEQUENCES;
D O I
10.1016/j.tcs.2016.05.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We examine three permutations on Dyck words. The first one, alpha, is related to the Baker and Norine theorem on graphs, the second one, beta, is the symmetry, and the third one is the composition of these two. The first two permutations are involutions and it is not difficult to compute the number of their fixed points, while the third one has cycles of different lengths. We show that the lengths of these cycles are odd numbers. This result allows us to give some information about the interplay between alpha and beta, and a characterization of the fixed points of alpha circle beta. 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 50 条
  • [31] (a, b)-rectangle patterns in permutations and words
    Kitaev, Sergey
    Remmel, Jeffrey
    DISCRETE APPLIED MATHEMATICS, 2015, 186 : 128 - 146
  • [32] UNAVOIDABLE REGULARITIES AND FACTOR PERMUTATIONS OF WORDS
    FOUCHE, WL
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 : 519 - 524
  • [33] Representations of infinite permutations by words (II)
    Dougherty, R
    Mycielski, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (08) : 2233 - 2243
  • [34] ON PERMUTATIONS GENERATED BY INFINITE BINARY WORDS
    Makarov, M. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2006, 3 : 304 - 311
  • [35] Permutations, parenthesis words, and Schroder numbers
    Ehrenfeucht, A
    Harju, T
    ten Pas, P
    Rozenberg, G
    DISCRETE MATHEMATICS, 1998, 190 (1-3) : 259 - 264
  • [36] Pattern statistics in faro words and permutations
    Baril, Jean-Luc
    Burstein, Alexander
    Kirgizov, Sergey
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [37] Some statistics on Dyck paths
    Merlini, D
    Sprugnoli, R
    Verri, MC
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 101 (1-2) : 211 - 227
  • [38] Some strings in Dyck paths
    Sapounakis, A.
    Tasoulas, I.
    Tsikouras, P.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2007, 39 : 49 - 72
  • [39] Lucas permutations and some notes on Fibonacci permutations
    Foundas, E.
    Patsakis, C.
    Chondrocoukis, G.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2008, 11 (02): : 181 - 190
  • [40] Some Combinatorics Related to Central Binomial Coefficients: Grand-Dyck Paths, Coloured Noncrossing Partitions and Signed Pattern Avoiding Permutations
    Luca Ferrari
    Graphs and Combinatorics, 2010, 26 : 51 - 70