Numerical investigation of pressure drop reduction without surrendering heat transfer enhancement in partially porous channel

被引:34
|
作者
Zehforoosh, A. [1 ]
Hossainpour, S. [1 ]
机构
[1] Sahand Univ Technol, Dept Mech Engn, Tabriz 513251996, Iran
关键词
Porous medium; Forced convection; Laminar flow; Permeability; Pressure drop reduction; PARALLEL-PLATE CHANNEL; FORCED-CONVECTION; VARIABLE PERMEABILITY; THERMAL DISPERSION; FLUID-FLOW; MEDIA;
D O I
10.1016/j.ijthermalsci.2010.05.016
中图分类号
O414.1 [热力学];
学科分类号
摘要
The present study is to investigate the numerical simulation of steady laminar forced convection in a partially porous channel, with four dissimilar porous-blocks, attached to the strip heat sources at the bottom wall. The analysis is based on the Navier-Stokes equation in the fluid field, the Darcy-Brinkman-Forchheimer flow model in the porous field, and the energy equations for two thermal fields. The effects of variations of different parameters such as porous blocks Darcy numbers, arrangements of dissimilar blocks, Forchheimer coefficient, Reynolds number, thermal conductivity and Prandtl number are investigated and the velocity and temperature fields are presented and discussed. In the dissimilar partially porous channel, it is found that when the blocks sorted from the lowest to the highest Da in the flow direction, the total heat transfer enhancement is almost the same as in the similar porous channel (Nu/Nu(sim) = 92%), while the total pressure drop is considerably lower (P/P-sim = 28%). In addition, reverse arrangement of porous blocks is suggested to prepare more uniform temperature gradient in all heat sources. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1649 / 1662
页数:14
相关论文
共 50 条
  • [31] Experimental and Numerical Investigation of the Pressure Drop and Heat Transfer Coefficient in Corrugated Tubes
    Mac Nelly, Steven
    Nieratschker, Willi
    Nadler, Marc
    Raab, Daniel
    Delgado, Antonio
    CHEMICAL ENGINEERING & TECHNOLOGY, 2015, 38 (12) : 2279 - 2290
  • [32] The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel
    Rezaei, Omid
    Akbari, Omid Ali
    Marzban, Ali
    Toghraie, Davood
    Pourfattah, Farzad
    Mashayekhi, Ramin
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 93 : 179 - 189
  • [33] End wall heat transfer and pressure drop measurements in a rectangular channel with porous turbulators
    Mahadevan, Srikrishna
    Ricklick, Mark
    Kapat, J.S.
    47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2011, 2011,
  • [34] Numerical Investigation on Heat Transfer Enhancement in Serpentine Mini-Channel Heat Sink
    Ahmed, Mohammed A.
    Alabdaly, Ibrahim K.
    Hatem, Saad M.
    Hussein, Maher M.
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2024, 42 (01) : 183 - 190
  • [35] A Numerical Investigation of Heat Transfer Enhancement Techniques in Mini-channel Heat Sink
    Rasul, Golam
    Elias, Md. Kamaruddin
    Morshed, A. K. M. Monjur
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (ICME 2017), 2018, 1980
  • [36] Numerical study on the heat transfer enhancement and pressure drop inside deep dimpled tubes
    Cheraghi, Mohammad Hassan
    Ameri, Mohammad
    Shahabadi, Mohammad
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 147 (147)
  • [37] Numerical investigation of heat transfer and pressure drop characteristics in an offset strip fin heat exchanger
    Dogan, Bahadir
    Ozturk, M. Mete
    Erbay, L. Berrin
    JOURNAL OF THERMAL ENGINEERING, 2021, 7 (06): : 1417 - 1431
  • [38] Heat Transfer and Pressure Drop in Mini Channel Heat Sinks
    Ghobadi, Mehdi
    Muzychka, Yuri S.
    HEAT TRANSFER ENGINEERING, 2015, 36 (10) : 902 - 911
  • [39] Numerical Study on Heat Transfer and Pressure Drop in a Mini-Channel with Corrugated Walls
    Begag, Abdelaziz
    Saim, Rachid
    Oztop, Hakan F.
    Abboudi, Said
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (03): : 1306 - 1314
  • [40] Numerical investigation of heat transfer and pressure drop of heat transfer oil in smooth and micro-finned tubes
    Dastmalchi, M.
    Arefmanesh, A.
    Sheikhzadeh, G. A.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2017, 121 : 294 - 304