On distance-regular Cayley graphs of generalized dicyclic groups

被引:2
|
作者
Huang, Xueyi [1 ,2 ]
Das, Kinkar Chandra [2 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
[2] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Distance-regular graph; Cayley graph; Generalized dicyclic group;
D O I
10.1016/j.disc.2022.112984
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a generalized dicyclic group with identity 1. An inverse closed subset S of G \ {1} is called minimal if < S > = G and there exists some s is an element of S such that < S \ {s, s(-1)}> not equal G. In this paper, we characterize distance-regular Cayley graphs Cay(G, S) of G under the condition that S is minimal. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] DISTANCE-REGULAR GRAPHS AND HALVED GRAPHS
    HEMMETER, J
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1986, 7 (02) : 119 - 129
  • [22] On almost distance-regular graphs
    Dalfo, C.
    van Dam, E. R.
    Fiol, M. A.
    Garriga, E.
    Gorissen, B. L.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) : 1094 - 1113
  • [23] Two distance-regular graphs
    Andries E. Brouwer
    Dmitrii V. Pasechnik
    [J]. Journal of Algebraic Combinatorics, 2012, 36 : 403 - 407
  • [24] REMARKS ON DISTANCE-REGULAR GRAPHS
    YOSHIZAWA, M
    [J]. DISCRETE MATHEMATICS, 1981, 34 (01) : 93 - 94
  • [25] A NOTE ON DISTANCE-REGULAR GRAPHS
    FISHER, PH
    [J]. ARS COMBINATORIA, 1988, 26A : 91 - 92
  • [26] Two distance-regular graphs
    Brouwer, Andries E.
    Pasechnik, Dmitrii V.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 36 (03) : 403 - 407
  • [27] EIGENVECTORS OF DISTANCE-REGULAR GRAPHS
    POWERS, DL
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1988, 9 (03) : 399 - 407
  • [28] Shilla distance-regular graphs
    Koolen, Jack H.
    Park, Jongyook
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (08) : 2064 - 2073
  • [29] Tight Distance-Regular Graphs
    Aleksandar Jurišić
    Jack Koolen
    Paul Terwilliger
    [J]. Journal of Algebraic Combinatorics, 2000, 12 : 163 - 197
  • [30] Edge-distance-regular graphs are distance-regular
    Camara, M.
    Dalfo, C.
    Delorme, C.
    Fiol, M. A.
    Suzuki, H.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (05) : 1057 - 1067