A Validity Criterion for Fuzzy Clustering

被引:0
|
作者
Brodowski, Stanislaw [1 ]
机构
[1] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, PL-31007 Krakow, Poland
关键词
clustering; fuzzy; validity index; number of clusters; INDEX; MODEL; VALIDATION; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a new validity index for fuzzy clustering: Pattern Distances Ratio (PDR) and some modifications improving its performance as cluster number selection criterion for Fuzzy C-means. It also presents experimental results concerning them. As other validity indices, solution presented in this paper may be used when a need for assessing of clustering or fuzzy clustering result adequacy arises. Most common example of such situation is when clustering algorithm that requires certain parameter, for example number of clusters, is selected but we lack a priori knowledge of this parameter and we would use educated guesses in concert with trial and error procedures. Validity index may allow to automate such process whenever it is necessary or convenient. In particular, it might ease incorporation of fuzzy clustering into more complex, intelligent systems.
引用
下载
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [21] Fully unsupervised fuzzy clustering with entropy criterion
    Lorette, A
    Descombes, X
    Zerubia, J
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 986 - 989
  • [22] Affine Takagi-Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion
    Kung, C. C.
    Su, J. Y.
    IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (05): : 1255 - 1265
  • [23] A survey of fuzzy clustering validity evaluation methods
    Wang, Hong-Yu
    Wang, Jie-Sheng
    Wang, Guan
    Information Sciences, 2022, 618 : 270 - 297
  • [24] A survey of fuzzy clustering validity evaluation methods
    Wang, Hong -Yu
    Wang, Jie-Sheng
    Wang, Guan
    INFORMATION SCIENCES, 2022, 618 : 270 - 297
  • [25] A stability based validity method for fuzzy clustering
    Falasconi, M.
    Gutierrez, A.
    Pardo, M.
    Sberveglieri, G.
    Marco, S.
    PATTERN RECOGNITION, 2010, 43 (04) : 1292 - 1305
  • [26] Swarm based fuzzy clustering with partition validity
    Hall, LO
    Kanade, PM
    FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 991 - 995
  • [27] A novel validity index in fuzzy clustering algorithm
    Feng Z.
    Fan J.-C.
    Fan, Jian-Cong (fanjiancong@sdust.edu.cn), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (10): : 183 - 190
  • [28] A new cluster-validity for fuzzy clustering
    Zahid, N
    Limouri, N
    Essaid, A
    PATTERN RECOGNITION, 1999, 32 (07) : 1089 - 1097
  • [29] Validity of fuzzy clustering using entropy regularization
    Sahbi, H
    Boujemaa, N
    FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 177 - 182
  • [30] Improved cluster validity index for fuzzy clustering
    Kwon, Soon Hak
    Kim, Jihong
    Son, Seo Ho
    ELECTRONICS LETTERS, 2021, 57 (21) : 792 - 794