Multi-threaded compression of Earth observation time-series data

被引:2
|
作者
Swanepoel, D. [1 ,2 ]
van den Bergh, F. [1 ]
机构
[1] CSIR, Meraka Inst, Remote Sensing Res Unit, Pretoria, South Africa
[2] Nearmap Ltd, POB R1831, Sydney, NSW 1225, Australia
关键词
Data compression; multi-threading; time-series; HDF; HDF5; MODIS;
D O I
10.1080/17538947.2017.1301580
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Earth observation data are typically compressed using general-purpose single-threaded compression algorithms that operate at a fraction of the bandwidth of modern storage and processing systems. We present evidence that recently developed multi-threaded compression codecs offer substantial benefits over widely used single-threaded codecs in terms of compression efficiency when applied to a selection of moderate resolution imaging spectroradiometer (MODIS) datasets stored in the HDF5 format. Compression codecs from the LZ77 and Rice families are shown to vary in efficacy when applied to different MODIS data products, highlighting the need for compression strategies to be tailored to different classes of data. We also introduce LPC-Rice, a new multi-threaded codec, that performs particularly well when applied to time-series data.
引用
收藏
页码:1214 / 1230
页数:17
相关论文
共 50 条
  • [41] EARTH SYSTEM MODELING AND CHAOTIC TIME-SERIES
    LIU, SD
    ACTA GEOPHYSICA SINICA, 1990, 33 (02): : 144 - 153
  • [42] MULTI-THREADED ARCHITECTURES AND BENCHMARK TESTS FOR REAL-TIME MULTI-VIEW VIDEO DECODING
    Gurler, C. Goktug
    Aksay, Anil
    Akar, Gozde Bozdagi
    Tekalp, A. Murat
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 237 - +
  • [43] Data Race Detection and Replay of Multi-threaded Programs Based on Petri Net Unfolding
    Lu F.-M.
    Huang Y.
    Zeng Q.-T.
    Bao Y.-X.
    Tang M.-F.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (08): : 3726 - 3744
  • [44] Low-latency Multi-threaded Ensemble Learning for Dynamic Big Data Streams
    Marron, Diego
    Ayguade, Eduard
    Herrero, Jose R.
    Read, Jesse
    Bifet, Albert
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 223 - 232
  • [45] A control theory approach to improve the real-time capability of multi-threaded microprocessors
    Brinkschulte, Uwe
    Pacher, Mathias
    ISORC 2008: 11TH IEEE SYMPOSIUM ON OBJECT/COMPONENT/SERVICE-ORIENTED REAL-TIME DISTRIBUTED COMPUTING - PROCEEDINGS, 2008, : 399 - 404
  • [46] Modeling multi-threaded architectures in PAMELA for real-time high performance applications
    Balakrishnan, S
    Nandy, SK
    vanGemund, AJC
    FOURTH INTERNATIONAL CONFERENCE ON HIGH-PERFORMANCE COMPUTING, PROCEEDINGS, 1997, : 407 - 414
  • [47] Evaluation on multi-threaded queue test data for multi-channel filter rod forming machine
    Cao J.
    Kong X.
    Ji Q.
    Zhang M.
    International Journal of Wireless and Mobile Computing, 2019, 17 (01): : 12 - 15
  • [48] Real-time multi-threaded reflectometry density profile reconstructions on COMPASS Tokamak
    Lourenco, P. D.
    Santos, J. M.
    Bogar, O.
    Havranek, A.
    Havlicek, J.
    Zajac, J.
    Hron, M.
    Panek, R.
    Fernandes, H.
    JOURNAL OF INSTRUMENTATION, 2019, 14
  • [49] Visualizing and labeling dense multi-sensor earth observation time series: The EO Time Series Viewer
    Jakimow, Benjamin
    van der Linden, Sebastian
    Thiel, Fabian
    Frantz, David
    Hostert, Patrick
    ENVIRONMENTAL MODELLING & SOFTWARE, 2020, 125
  • [50] (Multi) fractality of physiological time-series
    Knezevic, Andrea
    Martinis, Mladen
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (07): : 2103 - 2110