A Constrained Interval-Valued Linear Regression Model: A New Heteroscedasticity Estimation Method

被引:6
|
作者
Zhong, Yu [1 ]
Zhang, Zhongzhan [1 ]
Li, Shoumei [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100020, Peoples R China
基金
国家教育部科学基金资助;
关键词
Conditional maximum likelihood estimation; interval-valued data; order constraint; truncated normal distribution; weighted least squares estimation; SAMPLE SELECTION; VARIABLES; CONVERGENCE; SPACE;
D O I
10.1007/s11424-020-9075-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Linear regression models for interval-valued data have been widely studied. Most literatures are to split an interval into two real numbers, i.e., the left- and right-endpoints or the center and radius of this interval, and fit two separate real-valued or two dimension linear regression models. This paper is focused on the bias-corrected and heteroscedasticity-adjusted modeling by imposing order constraint to the endpoints of the response interval and weighted linear least squares with estimated covariance matrix, based on a generalized linear model for interval-valued data. A three step estimation method is proposed. Theoretical conclusions and numerical evaluations show that the proposed estimator has higher efficiency than previous estimators.
引用
收藏
页码:2048 / 2066
页数:19
相关论文
共 50 条
  • [1] A Constrained Interval-Valued Linear Regression Model: A New Heteroscedasticity Estimation Method
    Yu Zhong
    Zhongzhan Zhang
    Shoumei Li
    [J]. Journal of Systems Science and Complexity, 2020, 33 : 2048 - 2066
  • [2] A Constrained Interval-Valued Linear Regression Model:A New Heteroscedasticity Estimation Method
    ZHONG Yu
    ZHANG Zhongzhan
    LI Shoumei
    [J]. Journal of Systems Science & Complexity, 2020, 33 (06) : 2048 - 2066
  • [3] Constrained Interval-valued Linear Regression Model
    Li, Feng
    Li, Shoumei
    Tang, Nana
    Denoeux, Thierry
    [J]. 2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 402 - 409
  • [4] A new method to fit a linear regression model for interval-valued data
    de Carvalho, FD
    Neto, ED
    Tenorio, CP
    [J]. KI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3238 : 295 - 306
  • [5] Constrained linear regression models for interval-valued data with dependence
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    Coelho Neto, Jose F.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 258 - 263
  • [6] Constrained linear regression models for symbolic interval-valued variablesk
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) : 333 - 347
  • [7] Constrained Regression for Interval-Valued Data
    Gonzalez-Rivera, Gloria
    Lin, Wei
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (04) : 473 - 490
  • [8] Lasso Estimation of an Interval-Valued Multiple Regression Model
    Barzana, Marta Garcia
    Colubi, Ana
    Kontoghiorghes, Erricos John
    [J]. STRENGTHENING LINKS BETWEEN DATA ANALYSIS AND SOFT COMPUTING, 2015, 315 : 185 - 191
  • [9] Applying constrained linear regression models to predict interval-valued data
    Neto, EDL
    de Carvalho, FDT
    Freire, ES
    [J]. KI2005: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, 3698 : 92 - 106
  • [10] Linear regression with interval-valued data
    Sun, Yan
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (01): : 54 - 60