Maximum distance separable poset codes

被引:30
|
作者
Hyun, Jong Yoon [1 ]
Kim, Hyun Kwang [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea
关键词
maximum distance separable code; poset code; discrete Poisson summation formula; Moebius inversion formula;
D O I
10.1007/s10623-008-9204-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We derive the Singleton bound for poset codes and define the MDS poset codes as linear codes which attain the Singleton bound. In this paper, we study the basic properties of MDS poset codes. First, we introduce the concept of I-perfect codes and describe the MDS poset codes in terms of I -perfect codes. Next, we study the weight distribution of an MDS poset code and show that the weight distribution of an MDS poset code is completely determined. Finally, we prove the duality theorem which states that a linear code C is an MDS P-code if and only if C-perpendicular to is an MDS (P) over tilde -code, where C-perpendicular to is the dual code of C and (P) over tilde is the dual poset of P.
引用
收藏
页码:247 / 261
页数:15
相关论文
共 50 条
  • [41] A New Construction of Maximum Distance Separable (MDS) Self-Dual Codes over Finite Fields
    Zhang, Aixian
    Ji, Zhe
    [J]. ENTROPY, 2019, 21 (02):
  • [42] Puncturing maximum rank distance codes
    Csajbok, Bence
    Siciliano, Alessandro
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 49 (04) : 507 - 534
  • [43] MAXIMUM-DISTANCE LINEAR CODES
    MAKI, GK
    TRACEY, JH
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (05) : 632 - +
  • [44] Multicomponent codes with maximum code distance
    E. M. Gabidulin
    N. I. Pilipchuk
    [J]. Problems of Information Transmission, 2016, 52 : 276 - 283
  • [45] BLOCK CODES WITH SPECIFIED MAXIMUM DISTANCE
    REDDY, SM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (06) : 823 - +
  • [46] Convolutional codes with maximum distance profile
    Hutchinson, R
    Rosenthal, J
    Smarandache, R
    [J]. SYSTEMS & CONTROL LETTERS, 2005, 54 (01) : 53 - 63
  • [47] Multicomponent codes with maximum code distance
    Gabidulin, E. M.
    Pilipchuk, N. I.
    [J]. PROBLEMS OF INFORMATION TRANSMISSION, 2016, 52 (03) : 276 - 283
  • [48] Puncturing maximum rank distance codes
    Bence Csajbók
    Alessandro Siciliano
    [J]. Journal of Algebraic Combinatorics, 2019, 49 : 507 - 534
  • [49] Chain of Separable Binary Goppa Codes and Their Minimal Distance
    Bezzateev, Sergey
    Shekhunova, Natalia
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (12) : 5773 - 5778
  • [50] Codes with a poset metric
    Brualdi, RA
    Graves, JS
    Lawrence, KM
    [J]. DISCRETE MATHEMATICS, 1995, 147 (1-3) : 57 - 72