Merging of spin-wave modes in obliquely magnetized circular nanodots

被引:3
|
作者
Kharlan, Julia [1 ]
Borynskyi, Vladyslav [1 ]
Bunyaev, Sergey A. [2 ]
Bondarenko, Pavlo [1 ]
Salyuk, Olga [1 ]
Golub, Vladimir [1 ]
Serga, Alexander A. [3 ]
Dobrovolskiy, Oleksandr, V [4 ]
Chumak, Andrii [4 ]
Verba, Roman [1 ]
Kakazei, Gleb N. [2 ]
机构
[1] Inst Magnetism, UA-03142 Kiev, Ukraine
[2] Univ Porto, Inst Phys Adv Mat Nanotechnol & Photon IFIMUP, Dept Fis & Astron, P-4169007 Porto, Portugal
[3] Tech Univ Kaiserslautern, Fachbereich Phys & Landesforschungszentrum OPTIMA, D-67663 Kaiserslautern, Germany
[4] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
基金
新加坡国家研究基金会; 奥地利科学基金会;
关键词
D O I
10.1103/PhysRevB.105.014407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic nanoelements attract great interest due to their prospects for data storage and signal processing. Spin-wave confinement in these elements implies wave-number quantization, discrete frequency spectra and thus complex resonance patterns, strongly dependent on the elements' geometry and static magnetic configuration. Here we report experimental observation of unconventional single-frequency resonance response of flat circular Permalloy nanodots, which is achieved via the application of a magnetic field at a certain critical angle (theta) over tilde (B) with respect to the dot normal. This observation is explained as the merging of spin-wave eigenmodes under the transition of the spin-wave dispersion from the forward-volume to the backward-volume type, as elucidated by micromagnetic simulations in conjunction with an analytical theory. Our results offer a way for the creation of spin-wave systems with spectrally narrow magnetic noise.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Experimental Evidence of Self-Localized and Propagating Spin Wave Modes in Obliquely Magnetized Current-Driven Nanocontacts
    Bonetti, Stefano
    Tiberkevich, Vasil
    Consolo, Giancarlo
    Finocchio, Giovanni
    Muduli, Pranaba
    Mancoff, Fred
    Slavin, Andrei
    Akerman, Johan
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (21)
  • [32] SPIN-WAVE PATTERNS AND SPIN-WAVE TURBULENCE
    ELMER, FJ
    [J]. HELVETICA PHYSICA ACTA, 1994, 67 (02): : 205 - 206
  • [33] INVESTIGATIONS OF SURFACE AND BULK SPIN-WAVE MODES IN AS-PREPARED AND ANNEALED FENI MULTILAYERS BY SPIN-WAVE RESONANCE
    KORDECKI, R
    MECKENSTOCK, R
    PELZL, J
    NIKITOV, S
    [J]. JOURNAL OF APPLIED PHYSICS, 1993, 73 (10) : 6359 - 6361
  • [34] DISTRIBUTION OF SPIN-WAVE MODES IN AN AMORPHOUS FERROMAGNETIC CHAIN
    FOO, EN
    BOSE, SM
    [J]. PHYSICAL REVIEW B, 1974, 9 (09): : 3944 - 3945
  • [35] Unidirectional spin-wave edge modes in magnonic crystal
    Feilhauer, J.
    Zelent, M.
    Zhang, Zhiwang
    Christensen, J.
    Mruczkiewicz, M.
    [J]. APL MATERIALS, 2023, 11 (02)
  • [36] SPIN-WAVE LIKE MODES IN ITINERANT ELECTRON PARAMAGNETS
    RAMAKRISHNAN, TV
    [J]. PHYSICA B & C, 1977, 86 (JAN-M): : 378 - 380
  • [37] Spin-wave modes in a CoFeB magnonic crystal waveguide
    Mansurova, M.
    Muenzenberg, M.
    [J]. ULTRAFAST MAGNETISM I, 2015, 159 : 103 - 105
  • [38] TRANSFORM OF SPIN-WAVE MODES DUE TO THE PERIODIC HETEROGENEITY
    PIVOVAROV, ES
    [J]. ZHURNAL TEKHNICHESKOI FIZIKI, 1995, 65 (04): : 83 - 91
  • [39] SPIN-WAVE MODES IN LAYERED MAGNETIC SANDWICH STRUCTURES
    MERCIER, D
    LEVY, JCS
    WATSON, ML
    WHITING, JSS
    CHAMBERS, A
    [J]. PHYSICAL REVIEW B, 1991, 43 (04): : 3311 - 3317
  • [40] Magnonic spin-wave modes in CoFeB antidot lattices
    Ulrichs, Henning
    Lenk, Benjamin
    Muenzenberg, Markus
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (09)