The McShane and the Pettis integral of Banach space-valued functions defined on Rm

被引:11
|
作者
Ye, GJ [1 ]
Schwabik, S
机构
[1] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[2] Matemat Ustav AV CR, Prague 11567 1, Czech Republic
关键词
D O I
10.1215/ijm/1258138470
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define and study the McShane integral of functions mapping a compact interval to I-o in R-m into a Banach space X. We compare this integral with the Pettis integral and prove, in particular, that the two integrals are equivalent if X is reflexive and the unit ball of the dual X* satisfies an additional condition (P). This gives additional information oil an implicitly stated open problem of R.A. Gordon and on the work of D.H. Fremlin and J. Mendoza.
引用
收藏
页码:1125 / 1144
页数:20
相关论文
共 50 条