Pore-scale network model for drainage-dominated three-phase flow in porous media

被引:78
|
作者
Pereira, GG
Pinczewski, WV
Chan, DYC
Paterson, L
Oren, PE
机构
[1] UNIV MELBOURNE,DEPT MATH,PARKVILLE,VIC 3052,AUSTRALIA
[2] CSIRO,DIV PETR RESOURCES,AUSTRALIAN PETR COOPERAT RES CTR,GLEN WAVERLEY,VIC 3150,AUSTRALIA
[3] STATOIL,RES CTR,N-7005 TRONDHEIM,NORWAY
关键词
three-phase flow; network models; pore-scale drainage displacements; film flow;
D O I
10.1007/BF00139844
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Drainage displacements in three-phase flow under strongly wetting conditions are completely described by a simple generalisation of well understood two-phase drainage mechanisms. As in two-phase flow, the sequence of throat invasions in three-phase flow is determined by fluid connectivity and threshold capillary pressure for the invading interface. Flow through wetting and intermediate spreading films is important in determining fluid recoveries and the progress of the displacement in three-phase flow. Viscous pressure drops associated with flow through films give rise to multiple filling and emptying of pores. A three-phase, two-dimensional network model based on the pore-scale fluid distributions and displacement mechanisms reported by Oren et al. and which accounts for flow through both wetting and intermediate fluid films is shown to correctly predict all the important characteristics of three-phase flow observed in glass micromodel experiments.
引用
收藏
页码:167 / 201
页数:35
相关论文
共 50 条
  • [41] Pore-scale study of drainage processes in porous media with various structural heterogeneity
    Wei, Hangkai
    Zhu, Xiaofei
    Liu, Xiaochun
    Yang, Haien
    Tao, Wen-Quan
    Chen, Li
    International Communications in Heat and Mass Transfer, 2022, 132
  • [42] Pore-scale simulation of drying in porous media using a hybrid lattice Boltzmann: pore network model
    Zhao, Jianlin
    Qin, Feifei
    Kang, Qinjun
    Derome, Dominique
    Carmeliet, Jan
    DRYING TECHNOLOGY, 2022, 40 (04) : 719 - 734
  • [43] An Orthorhombic Lattice Boltzmann Model for Pore-Scale Simulation of Fluid Flow in Porous Media
    Jiang, Baoliang
    Zhang, Xiaoxian
    TRANSPORT IN POROUS MEDIA, 2014, 104 (01) : 145 - 159
  • [44] Pore-scale modelling of gravity-driven drainage in disordered porous media
    Cui, Guanzhe
    Liu, Mingchao
    Dai, Weijing
    Gan, Yixiang
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2019, 114 : 19 - 27
  • [45] An Orthorhombic Lattice Boltzmann Model for Pore-Scale Simulation of Fluid Flow in Porous Media
    Baoliang Jiang
    Xiaoxian Zhang
    Transport in Porous Media, 2014, 104 : 145 - 159
  • [46] Impact of pore-scale three-phase flow for arbitrary wettability on reservoir-scale oil recovery
    Al-Dhahli, Adnan
    Geiger, Sebastian
    van Dijke, Marinus I. J.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2014, 121 : 110 - 121
  • [47] Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media
    Icardi, Matteo
    Boccardo, Gianluca
    Marchisio, Daniele L.
    Tosco, Tiziana
    Sethi, Rajandrea
    PHYSICAL REVIEW E, 2014, 90 (01)
  • [48] The Impact of Pore-Scale Flow Regimes on Upscaling of Immiscible Two-Phase Flow in Porous Media
    Picchi, D.
    Battiato, I.
    WATER RESOURCES RESEARCH, 2018, 54 (09) : 6683 - 6707
  • [49] Direct Numerical Simulation of Pore-Scale Trapping Events During Capillary-Dominated Two-Phase Flow in Porous Media
    Shams, Mosayeb
    Singh, Kamaljit
    Bijeljic, Branko
    Blunt, Martin J.
    TRANSPORT IN POROUS MEDIA, 2021, 138 (02) : 443 - 458
  • [50] Direct Numerical Simulation of Pore-Scale Trapping Events During Capillary-Dominated Two-Phase Flow in Porous Media
    Mosayeb Shams
    Kamaljit Singh
    Branko Bijeljic
    Martin J. Blunt
    Transport in Porous Media, 2021, 138 : 443 - 458