Short-Term Wind Power Forecasting Method Based on Mode Decomposition and Feature Extraction

被引:0
|
作者
Li, Chuang [1 ]
Kong, Xiangyu [1 ]
Wang, Xingguo [2 ]
Zheng, Feng [3 ]
Chen, Zhengguang [2 ]
Zhou, Zexin [2 ]
机构
[1] Tianjin Univ, Sch Elect Automat & Informat Engn, Tianjin, Peoples R China
[2] China Elect Power Res Inst, Grid Safety & Energy Conservat, Beijing, Peoples R China
[3] State Grid Hebei Elect Power Co Ltd, Shijiazhuang Power Supply Branch, Shijiazhuang, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
wind power forecasting; ensemble empirical mode decomposition; generalized mutual information; least squares support vector machine; feature extraction; SPEED;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate and stable wind power forecasting is an inevitable requirement for efficient use of renewable energy. This paper proposes a short-term wind power combination forecasting method based on mode decomposition and feature extraction. The original wind speed time series is decomposed into multiple subsequences by the ensemble empirical mode decomposition (EEMD). The generalized mutual information (GMI) is used to extract the optimal input feature set of each subsequence. The prediction values of each subsequence are obtained based on the least squares support vector machine (LSSVM) model, and then the final prediction results are obtained by combining them. Finally, the paper proves that the proposed method can predict short-term wind power more accurately and stably by setting up the contrast experiment.
引用
收藏
页码:1735 / 1739
页数:5
相关论文
共 50 条
  • [41] A short-term wind power prediction approach based on ensemble empirical mode decomposition and improved long short-term memory
    Jiang, Tianyue
    Liu, Yutong
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110
  • [42] Short-term wind speed forecasting model for wind farm based on wavelet decomposition
    Cao Lei
    Li Ran
    2008 THIRD INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION AND RESTRUCTURING AND POWER TECHNOLOGIES, VOLS 1-6, 2008, : 2525 - 2529
  • [43] A Short-term Wind Power Forecasting Method Based on NWP Wind Speed Fluctuation Division and Clustering
    Li, Quanhui
    Lv, Ji
    Ding, Min
    Li, Danyun
    Fang, Zhijian
    2023 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS, 2023,
  • [44] Combined Prediction for Short-term Wind Power Based on Variable Time Window and Feature Extraction
    Ye L.
    Teng J.
    Lan H.
    Zhong W.
    Wu L.
    Liu H.
    Wang Z.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2017, 41 (17): : 29 - 36and59
  • [45] Short-Term Load Forecasting Method using WaveNet based on Optimized Variational Mode Decomposition
    Yang, Xiaofeng
    Zhao, Shousheng
    Li, Kangyi
    Fan, Qiang
    Huang, Yuan
    Zhou, Daiming
    Xu, Zeshi
    2024 THE 7TH INTERNATIONAL CONFERENCE ON ENERGY, ELECTRICAL AND POWER ENGINEERING, CEEPE 2024, 2024, : 925 - 930
  • [46] A Short-Term Photovoltaic Power Forecasting Method Combining a Deep Learning Model with Trend Feature Extraction and Feature Selection
    Wu, Kaitong
    Peng, Xiangang
    Li, Zilu
    Cui, Wenbo
    Yuan, Haoliang
    Lai, Chun Sing
    Lai, Loi Lei
    ENERGIES, 2022, 15 (15)
  • [47] Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network
    Duan, Jiandong
    Wang, Peng
    Ma, Wentao
    Tian, Xuan
    Fang, Shuai
    Cheng, Yulin
    Chang, Ying
    Liu, Haofan
    ENERGY, 2021, 214
  • [48] Short-Term Wind Power Prediction Based on Empirical Mode Decomposition and Extreme Learning Machine
    Wu, Jiajia
    Liu, Changliang
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON ENVIRONMENT, MATERIALS, CHEMISTRY AND POWER ELECTRONICS, 2016, 84 : 872 - 877
  • [49] Short-term Wind Power Prediction Based on Variational Mode Decomposition and Hybrid Neural Networks
    Wang, Heng
    Yu, Xiaodong
    Yu, Xuanzhou
    Jiang, Zhao
    Song, Shangqiang
    Xu, Rui
    Zang, Hongzhi
    2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 2353 - 2361
  • [50] Short-term Wind Power Interval Prediction Based on Combined Mode Decomposition and Deep Learning
    Xiao B.
    Zhang B.
    Wang X.
    Gao N.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (17): : 110 - 117