Prediction of the Intensity Process of Doubly Stochastic Multichannel Poisson Processes

被引:0
|
作者
Maria Fernandez-Alcala, Rosa [1 ]
Navarro-Moreno, Jesus [1 ]
Carlos Ruiz-Molina, Juan [1 ]
机构
[1] Univ Jaen, Dept Stat & Operat Res, Jaen 23071, Spain
关键词
Doubly stochastic multichannel Poisson processes; minimum mean square-error filtering and prediction problems; LEAST-SQUARES ESTIMATION; SPECTRAL FACTORIZATION; COVARIANCE FUNCTIONS; RECURSIVE ESTIMATION; INNOVATIONS APPROACH;
D O I
10.1109/TAC.2011.2178878
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the problem of predicting the intensity process of an observed doubly stochastic multichannel Poisson process. Under the only hypothesis that the covariance function of the intensity process is separable, recursive algorithms for the computation of the optimal linear filter and predictor are designed. Approximate solutions to the nonlinear filtering and prediction problems are also given. The main advantage of the proposed solutions is that they can be applied to those situations where the intensity process does not satisfy a stochastic differential equation.
引用
下载
收藏
页码:1843 / 1848
页数:6
相关论文
共 50 条
  • [21] Doubly stochastic Poisson processes in artificial neural learning
    Card, HC
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (01): : 229 - 231
  • [22] Recursive linear estimation for doubly stochastic Poisson processes
    Fernandez-Alcala, Rosa
    Navarro-Moreno, Jess
    Ruiz-Molina, Juan Carlos
    Oya, Antonia
    WORLD CONGRESS ON ENGINEERING 2007, VOLS 1 AND 2, 2007, : 894 - 897
  • [23] Bankruptcy Prediction with a Doubly Stochastic Poisson Forward Intensity Model and Low-Quality Data
    Berent, Tomasz
    Rejman, Radoslaw
    RISKS, 2021, 9 (12)
  • [25] ESTIMATION AND FILTERING ON A DOUBLY STOCHASTIC POISSON-PROCESS
    VALDERRAMA, MJ
    JIMENEZ, F
    GUTIERREZ, R
    MARTINEZALMECIJA, A
    APPLIED STOCHASTIC MODELS AND DATA ANALYSIS, 1995, 11 (01): : 13 - 24
  • [26] ON LINEAR INTENSITY MODELS FOR MIXED DOUBLY STOCHASTIC POISSON AND SELF-EXCITING POINT-PROCESSES
    OGATA, Y
    AKAIKE, H
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1982, 44 (01): : 102 - 107
  • [27] On Chaos Representation and Orthogonal Polynomials for the Doubly Stochastic Poisson Process
    Di Nunno, Giulia
    Sjursen, Steffen
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VII, 2013, 67 : 23 - 54
  • [28] NONPARAMETRIC-INFERENCE FOR A DOUBLY STOCHASTIC POISSON-PROCESS
    UTIKAL, KJ
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1993, 45 (02) : 331 - 349
  • [29] VARIANCE OF ESTIMATORS OF AUTOCORRELATION PARAMETERS OF POISSON DOUBLY STOCHASTIC POINT PROCESSES
    DELOTTO, I
    GATTI, E
    NUCLEAR INSTRUMENTS & METHODS, 1975, 127 (04): : 561 - 569
  • [30] STATISTICAL-THEORY OF ESTIMATION IN DOUBLY-STOCHASTIC POISSON PROCESSES
    MISRA, PN
    SORENSON, HW
    INFORMATION SCIENCES, 1973, 6 (04) : 343 - 358