Expectation propagation learning of a Dirichlet process mixture of Beta-Liouville distributions for proportional data clustering

被引:13
|
作者
Fan, Wentao [1 ]
Bouguila, Nizar [2 ]
机构
[1] Huaqiao Univ, Dept Comp Sci & Technol, Xiamen, Peoples R China
[2] Concordia Univ, Concordia Inst Informat Syst Engn, Montreal, PQ H3G 1T7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Unsupervised learning; Expectation propagation; Dirichlet process; Beta-Liouville distribution; Facial expression; Action recognition; FACIAL EXPRESSION RECOGNITION; HUMAN MOVEMENT; SEQUENCES; FEATURES;
D O I
10.1016/j.engappai.2015.03.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a nonparametric Bayesian model for the clustering of proportional data. Our model is based on an infinite mixture of Beta-Liouville distributions and allows a compact description of complex data. The choice of the Beta-Liouville as the basis of our model is justified by the fact that it has been shown to be a good alternative to the Dirichlet and generalized Dirichlet distributions for the statistical representation of proportional data. Using this infinite mixture, we show how a careful modeling can achieve good results by allowing the elicitation of prior belief about the parameters and the number of clusters through suitable learning. Indeed, we develop an efficient learning algorithm, based on expectation propagation, to estimate the parameters of our infinite Beta-Liouville mixture model. The feasibility and effectiveness of the proposed method are demonstrated by two challenging applications namely action and facial expression recognition. (C) 2015 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [31] High-dimensional count data clustering based on an exponential approximation to the multinomial Beta-Liouville distribution
    Zamzami, Nuha
    Bouguila, Nizar
    INFORMATION SCIENCES, 2020, 524 : 116 - 135
  • [32] Proportional data modeling via selection and estimation of a finite mixture of scaled Dirichlet distributions
    Zamzami, Nuha
    Alsuroji, Rua
    Eromonsele, Oboh
    Bouguila, Nizar
    COMPUTATIONAL INTELLIGENCE, 2020, 36 (02) : 459 - 485
  • [33] Variational learning of a Dirichlet process of generalized Dirichlet distributions for simultaneous clustering and feature selection
    Fan, Wentao
    Bouguila, Nizar
    PATTERN RECOGNITION, 2013, 46 (10) : 2754 - 2769
  • [34] DIRICHLET PROCESS MIXTURE MODELS FOR CLUSTERING I-VECTOR DATA
    Seshadri, Shreyas
    Remes, Ulpu
    Rasanen, Okko
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 5470 - 5474
  • [35] A Dirichlet process mixture model for clustering longitudinal gene expression data
    Sun, Jiehuan
    Herazo-Maya, Jose D.
    Kaminski, Naftali
    Zhao, Hongyu
    Warren, Joshua L.
    STATISTICS IN MEDICINE, 2017, 36 (22) : 3495 - 3506
  • [36] A Spatial Dirichlet Process Mixture Model for Clustering Population Genetics Data
    Reich, Brian J.
    Bondell, Howard D.
    BIOMETRICS, 2011, 67 (02) : 381 - 390
  • [37] Efficient Computation of Log-likelihood Function in Clustering Overdispersed Count Data Using Multinomial Beta-Liouville Distribution
    Daghyani, Masoud
    Zamzami, Nuha
    Bouguila, Nizar
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 986 - 993
  • [38] Unsupervised learning of Dirichlet process mixture models with missing data
    Xunan ZHANG
    Shiji SONG
    Lei ZHU
    Keyou YOU
    Cheng WU
    Science China(Information Sciences), 2016, 59 (01) : 161 - 174
  • [39] Unsupervised learning of Dirichlet process mixture models with missing data
    Zhang, Xunan
    Song, Shiji
    Zhu, Lei
    You, Keyou
    Wu, Cheng
    SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (01) : 1 - 14
  • [40] A Novel 3D Model Recognition Approach using Pitman-Yor Process Mixtures of Beta-Liouville Distributions
    Fan, Wentao
    Al-Osaimi, Faisal R.
    Bouguila, Nizar
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 1986 - 1989