Expectation propagation learning of a Dirichlet process mixture of Beta-Liouville distributions for proportional data clustering

被引:13
|
作者
Fan, Wentao [1 ]
Bouguila, Nizar [2 ]
机构
[1] Huaqiao Univ, Dept Comp Sci & Technol, Xiamen, Peoples R China
[2] Concordia Univ, Concordia Inst Informat Syst Engn, Montreal, PQ H3G 1T7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Unsupervised learning; Expectation propagation; Dirichlet process; Beta-Liouville distribution; Facial expression; Action recognition; FACIAL EXPRESSION RECOGNITION; HUMAN MOVEMENT; SEQUENCES; FEATURES;
D O I
10.1016/j.engappai.2015.03.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a nonparametric Bayesian model for the clustering of proportional data. Our model is based on an infinite mixture of Beta-Liouville distributions and allows a compact description of complex data. The choice of the Beta-Liouville as the basis of our model is justified by the fact that it has been shown to be a good alternative to the Dirichlet and generalized Dirichlet distributions for the statistical representation of proportional data. Using this infinite mixture, we show how a careful modeling can achieve good results by allowing the elicitation of prior belief about the parameters and the number of clusters through suitable learning. Indeed, we develop an efficient learning algorithm, based on expectation propagation, to estimate the parameters of our infinite Beta-Liouville mixture model. The feasibility and effectiveness of the proposed method are demonstrated by two challenging applications namely action and facial expression recognition. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Extended variational inference for Dirichlet process mixture of Beta-Liouville distributions for proportional data modeling
    Lai, Yuping
    Guan, Wenbo
    Luo, Lijuan
    Ruan, Qiang
    Ping, Yuan
    Song, Heping
    Meng, Hongying
    Pan, Yu
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (07) : 4277 - 4306
  • [2] Online Learning of a Dirichlet Process Mixture of Beta-Liouville Distributions via Variational Inference
    Fan, Wentao
    Bouguila, Nizar
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (11) : 1850 - 1862
  • [3] Unsupervised Learning Using Expectation Propagation Inference of Inverted Beta-Liouville Mixture Models for Pattern Recognition Applications
    Bourouis, Sami
    Bouguila, Nizar
    [J]. CYBERNETICS AND SYSTEMS, 2023, 54 (04) : 474 - 498
  • [4] A Dirichlet Process Mixture of Generalized Dirichlet Distributions for Proportional Data Modeling
    Bouguila, Nizar
    Ziou, Djemel
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (01): : 107 - 122
  • [5] Variational learning for finite Beta-Liouville mixture models
    LAI Yu-ping
    ZHOU Ya-jian
    PING Yuan
    GUO Yu-cui
    YANG Yi-xian
    [J]. The Journal of China Universities of Posts and Telecommunications, 2014, 21 (02) : 98 - 103
  • [6] Online Data Clustering Using Variational Learning of a Hierarchical Dirichlet Process Mixture of Dirichlet Distributions
    Fan, Wentao
    Bouguila, Nizar
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2014, 2014, 8505 : 18 - 32
  • [7] Maximum A Posteriori Approximation of Dirichlet and Beta-Liouville Hidden Markov Models for Proportional Sequential Data Modeling
    Ali, Samr
    Bouguila, Nizar
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 4081 - 4087
  • [8] Data Clustering with Libby-Novick Beta-Liouville Mixture Models: A Minimum Message Length Approach
    Sghaier, Oussama
    Amayri, Manar
    Bouguila, Nizar
    [J]. PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024, 2024, : 314 - 321
  • [9] A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models
    Hu, Can
    Fan, Wentao
    Du, Ji-Xiang
    Bouguila, Nizar
    [J]. NEUROCOMPUTING, 2019, 333 : 110 - 123
  • [10] Non-Gaussian Data Clustering via Expectation Propagation Learning of Finite Dirichlet Mixture Models and Applications
    Wentao Fan
    Nizar Bouguila
    [J]. Neural Processing Letters, 2014, 39 : 115 - 135