Stabilization of rigid body dynamics using the Serret-Andoyer variables

被引:0
|
作者
Gurfil, P
机构
关键词
D O I
10.1109/ACC.2005.1470284
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops a new controller for stabilization of rigid body dynamics. The state-space model is formulated using canonical elements, known as the Serret-Andoyer variables, thus far unused for engineering applications. The controllability of the problem is examined and a damping feedback is derived using the Jurdjevic-Quinn method. It is shown that the new feedback controller is an asymptotic smooth feedback stabilizer. The performance of the new controller is examined in a simulation, showing excellent dynamic closed-loop behavior.
引用
收藏
页码:2122 / 2127
页数:6
相关论文
共 50 条
  • [21] Rigid Body Dynamics Using Clifford Algebra
    J. M. Selig
    E. Bayro-Corrochano
    [J]. Advances in Applied Clifford Algebras, 2010, 20 : 141 - 154
  • [22] Almost global finite-time stabilization of rigid body attitude dynamics using rotation matrices
    Bohn, Jan
    Sanyal, Amit K.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (09) : 2008 - 2022
  • [23] Rigid Body Dynamics Using Clifford Algebra
    Selig, J. M.
    Bayro-Corrochano, E.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (01) : 141 - 154
  • [24] Rotational stabilization of a rigid body using two torque actuators
    Fazal-ur-Rehman
    [J]. IEEE INMIC 2001: IEEE INTERNATIONAL MULTI TOPIC CONFERENCE 2001, PROCEEDINGS: TECHNOLOGY FOR THE 21ST CENTURY, 2001, : 139 - 142
  • [25] Optimal stabilization of a rigid body motion using rotors system
    El-Gohary, A
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2003, 136 (2-3) : 229 - 239
  • [26] Stochastic stabilization of the rotational motion of a rigid body using rotors
    Fares, ME
    El-Gohary, A
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2001, 36 (04) : 565 - 570
  • [27] Optimal stabilization of the equilibrium positions of a rigid body using rotors
    El-Gohary, A
    Youssif, YG
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (11) : 2007 - 2014
  • [28] GENERAL THEORY OF THE ROTATION OF THE NON-RIGID EARTH AT THE SECOND ORDER. I. THE RIGID MODEL IN ANDOYER VARIABLES
    Getino, J.
    Escapa, A.
    Miguel, D.
    [J]. ASTRONOMICAL JOURNAL, 2010, 139 (05): : 1916 - 1934
  • [29] STABILIZATION PARACHUTES - A RIGID BODY TREATMENT
    JONES, DF
    DESMIER, PE
    [J]. AMERICAN JOURNAL OF PHYSICS, 1987, 55 (06) : 538 - 544
  • [30] PREDICTING REBOUNDS USING RIGID-BODY DYNAMICS
    SMITH, CE
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1991, 58 (03): : 754 - 758