Modeling of reaction-diffusion processes of synthesis of materials with regular (periodic) microstructure

被引:3
|
作者
Shevchenko, V. Ya. [1 ]
Makogon, A. I. [1 ]
Sychov, M. M. [1 ]
机构
[1] Russian Acad Sci, Inst Silicate Chem, St Petersburg 199034, Russia
来源
OPEN CERAMICS | 2021年 / 6卷
基金
俄罗斯科学基金会;
关键词
Reaction-diffusion processes; Turing reactions; Triply periodic minimal surface; Regular microstructure; Gray-Scott model; LEAD-FREE PIEZOCERAMICS; X-RAY-DIFFRACTION; PHASE-TRANSITIONS; SINGLE-CRYSTALS; ELECTROMECHANICAL PROPERTIES; RELAXOR FERROELECTRICS; PEROVSKITE COMPOUNDS; DEPENDENT PROPERTIES; TEMPERATURE; STATE;
D O I
10.1016/j.oceram.2021.100088
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The paper represents results of modeling of reaction-diffusion processes that ensure the formation of materials with a regular (periodic) interconnected microstructure. A numerical method is proposed for solving the reactiondiffusion system of Turing equations. Using the Gray-Scott model as an example, it is shown that under certain conditions a system is formed with the geometry of triply periodic minimal surface (TPMS). It is shown that Turing reaction-diffusion processes can become the basis of a new technology of materials with an adjustable (periodic) microstructure.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Convergence to periodic solutions in periodic quasimonotone reaction-diffusion systems
    Wang, Y
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) : 25 - 40
  • [32] A two-scale modelling approach to reaction-diffusion processes in porous materials
    Meier, S. A.
    Peter, M. A.
    Bohm, M.
    COMPUTATIONAL MATERIALS SCIENCE, 2007, 39 (01) : 29 - 34
  • [33] Reaction-diffusion modeling in the NEURON simulator
    Robert A McDougal
    Yosef Skolnick
    James C Schaff
    William W Lytton
    Michael L Hines
    BMC Neuroscience, 13 (Suppl 1)
  • [34] Reaction-diffusion equations and ecological modeling
    Cosner, C.
    TUTORIALS IN MATHEMATICAL BIOSCIENCES IV: EVOLUTION AND ECOLOGY, 2008, 1922 : 77 - 115
  • [35] Reaction rate in reversible A⇆B reaction-diffusion processes
    Sinder, M.
    Sokolovsky, V.
    Pelleg, J.
    APPLIED PHYSICS LETTERS, 2010, 96 (07)
  • [36] Hybrid simulations of stochastic reaction-diffusion processes for modeling intracellular signaling pathways
    Chiam, K. -H.
    Tan, Chee Meng
    Bhargava, Vipul
    Rajagopal, Gunaretnam
    PHYSICAL REVIEW E, 2006, 74 (05)
  • [37] Modeling of nonlinear reaction-diffusion processes of amperometric polymer-modified electrodes
    Rahamathunissa, G.
    Rajendran, L.
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2008, 7 (01): : 113 - 138
  • [38] Modeling Reaction-Diffusion Processes of the Formation of Diamond-Silicon Carbide Composites
    Shevchenko, V. Ya
    Sychev, M. M.
    Makogon, A., I
    GLASS PHYSICS AND CHEMISTRY, 2021, 47 (04) : 289 - 296
  • [39] Modeling mosquito control by an impulsive reaction-diffusion mosquito model with periodic evolution domain
    Li, Yun
    Zhao, Hongyong
    Cheng, Yao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130
  • [40] Periodic solutions of a three-species periodic reaction-diffusion system
    Qiao, Tiantian
    Sun, Jiebao
    Wu, Boying
    ANNALES POLONICI MATHEMATICI, 2011, 100 (02) : 179 - 191