STGRN: A Spatial-Temporal Graph Resonance Network for Social Connection Inference

被引:2
|
作者
Min, Shengjie [1 ]
Peng, Jing [2 ]
Luo, Guangchun [1 ]
Gao, Zhan [3 ]
Fang, Bo [4 ]
Rao, Dingyuan [4 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Sichuan Prov Publ Secur Dept, Chengdu, Peoples R China
[3] Sichuan Univ, Chengdu, Peoples R China
[4] ChinaCloud Informat Technol Co Ltd, Chengdu, Peoples R China
关键词
Trajectory Data Mining; Graph Neural Network; Social Connection Inference; Social Network Analysis; DISCOVERY;
D O I
10.1109/ICCAE51876.2021.9426115
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Social Connection Inference (SCI), as one of the most important social network analysis techniques, has been a popular research direction for decades. A lot of studies have been utilizing spatial-temporal co-occurrence events for mining latent social relations. The previous studies mainly look into the characteristics of the point-to-point meetup events. Moreover. some methods employ the social neighborhood of two target objects for better prediction. However, we have rarely seen research utilizing the network structure formed by meetup events for better SCI performance. In this paper, we propose a graph neural network framework, namely Spatial-Temporal Graph Resonance Network (STGRN), for social connection inference enhancement. Firstly, we calculate co-occurrence events' characteristics, including two novel features we designed: Ceo-Spread and ActM-Rate. Secondly, we build a network embedding based on meetup relations. Thirdly, we combine the meetup events, social network, and co-occurrence network for the final prediction. In the end, we conduct extensive experiments on public datasets to prove our method's effectiveness.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 50 条
  • [31] STGGAN: Spatial-temporal Graph Generation
    Zhang, Liming
    27TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2019), 2019, : 608 - 609
  • [32] Transfer Learning With Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Yao, Zhixiu
    Xia, Shichao
    Li, Yun
    Wu, Guangfu
    Zuo, Linli
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8592 - 8605
  • [33] AdpSTGCN: Adaptive spatial-temporal graph convolutional network for traffic forecasting
    Zhang, Xudong
    Chen, Xuewen
    Tang, Haina
    Wu, Yulei
    Shen, Hanji
    Li, Jun
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [34] STAGCN: Spatial-Temporal Attention Graph Convolution Network for Traffic Forecasting
    Gu, Yafeng
    Deng, Li
    MATHEMATICS, 2022, 10 (09)
  • [35] Spatial-Temporal Attention Network for Crime Prediction with Adaptive Graph Learning
    Sun, Mingjie
    Zhou, Pengyuan
    Tian, Hui
    Liao, Yong
    Xie, Haiyong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 656 - 669
  • [36] Sparse Transformer Network With Spatial-Temporal Graph for Pedestrian Trajectory Prediction
    Gao, Long
    Gu, Xiang
    Chen, Feng
    Wang, Jin
    IEEE Access, 2024, 12 : 144725 - 144737
  • [37] Graph Neural Network for Fraud Detection via Spatial-Temporal Attention
    Cheng, Dawei
    Wang, Xiaoyang
    Zhang, Ying
    Zhang, Liqing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (08) : 3800 - 3813
  • [38] Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting
    Shao, Zezhi
    Zhang, Zhao
    Wei, Wei
    Wang, Fei
    Xu, Yongjun
    Cao, Xin
    Jensen, Christian S.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (11): : 2733 - 2746
  • [39] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [40] Adaptive spatial-temporal graph attention network for traffic speed prediction
    张玺君
    ZHANG Baoqi
    ZHANG Hong
    NIE Shengyuan
    ZHANG Xianli
    High Technology Letters, 2024, 30 (03) : 221 - 230