Predictive Business Process Monitoring Framework with Hyperparameter Optimization

被引:35
|
作者
Di Francescomarino, Chiara [2 ]
Dumas, Marlon [1 ]
Federici, Marco [3 ]
Ghidini, Chiara [2 ]
Maggi, Fabrizio Maria [1 ]
Rizzi, Williams [3 ]
机构
[1] Univ Tartu, Liivi 2, EE-50409 Tartu, Estonia
[2] FBK IRST, Via Sommarive 18, I-38050 Trento, Italy
[3] Univ Trento, Via Sommarive 9, I-38123 Trento, Italy
关键词
Predictive process monitoring; Hyperparameter optimization; Linear temporal logic;
D O I
10.1007/978-3-319-39696-5_22
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Predictive business process monitoring exploits event logs to predict how ongoing (uncompleted) traces will unfold up to their completion. A predictive process monitoring framework collects a range of techniques that allow users to get accurate predictions about the achievement of a goal for a given ongoing trace. These techniques can be combined and their parameters configured in different framework instances. Unfortunately, a unique framework instance that is general enough to outperform others for every dataset, goal or type of prediction is elusive. Thus, the selection and configuration of a framework instance needs to be done for a given dataset. This paper presents a predictive process monitoring framework armed with a hyperparameter optimization method to select a suitable framework instance for a given dataset.
引用
收藏
页码:361 / 376
页数:16
相关论文
共 50 条
  • [41] A Multi-View Deep Learning Approach for Predictive Business Process Monitoring
    Pasquadibisceglie, Vincenzo
    Appice, Annalisa
    Castellano, Giovanna
    Malerba, Donato
    [J]. IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 15 (04) : 2382 - 2395
  • [42] Predictive Monitoring of Business Processes: A Survey
    Eduardo Marquez-Chamorro, Alfonso
    Resinas, Manuel
    Ruiz-Cortes, Antonio
    [J]. IEEE TRANSACTIONS ON SERVICES COMPUTING, 2018, 11 (06) : 962 - 977
  • [43] Predictive Task Monitoring for Business Processes
    Cabanillas, Cristina
    Di Ciccio, Claudio
    Mendling, Jan
    Baumgrass, Anne
    [J]. BUSINESS PROCESS MANAGEMENT, BPM 2014, 2014, 8659 : 424 - 432
  • [44] An Anti-Pattern-based Runtime Business Process Compliance Monitoring Framework
    Barnawi, Ahmed
    Awad, Ahmed
    Elgammal, Amal
    Elshawi, Radwa
    Almalaise, Abduallah
    Sakr, Sherif
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (02) : 551 - 572
  • [45] Performance-Centric Business Activity Monitoring Framework for Continuous Process Improvement
    Han, Kwan Hee
    Choi, Sang Hyun
    Kang, Jin Gu
    Lee, Geon
    [J]. PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING AND DATA BASES, 2010, : 40 - +
  • [46] A Data-Driven Prediction Framework for Analyzing and Monitoring Business Process Performances
    Bevacqua, Antonio
    Carnuccio, Marco
    Folino, Francesco
    Guarascio, Massimo
    Pontieri, Luigi
    [J]. ENTERPRISE INFORMATION SYSTEMS, ICEIS 2013, 2014, 190 : 100 - 117
  • [47] Bayesian Hyperparameter Estimation using Gaussian Process and Bayesian Optimization
    Katakami, Shun
    Sakamoto, Hirotaka
    Okada, Masato
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (07)
  • [48] Tool condition monitoring framework for predictive maintenance: a case study on milling process
    Traini, E.
    Bruno, G.
    Lombardi, F.
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2021, 59 (23) : 7179 - 7193
  • [49] An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms
    Vincent, Amala Mary
    Jidesh, P.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [50] Stability Metrics for Enhancing the Evaluation of Outcome-Based Business Process Predictive Monitoring
    Kim, Jongchan
    Comuzzi, Marco
    [J]. IEEE ACCESS, 2021, 9 : 133461 - 133471