ASYMPTOTIC BEHAVIOR FOR A SCHRODINGER EQUATION WITH NONLINEAR SUBCRITICAL DISSIPATION

被引:11
|
作者
Cazenave, Thierry [1 ,2 ]
Han, Zheng [3 ]
机构
[1] Sorbonne Univ, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
[2] CNRS, Lab Jacques Louis Lions, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
[3] Hangzhou Normal Univ, Dept Math, 2318 Yuhangtang Rd, Hangzhou 311121, Peoples R China
关键词
Nonlinear Schrodinger equation; subcritical dissipative nonlinearity; asymptotic behavior; LOW-ENERGY; SCATTERING; BLOWUP;
D O I
10.3934/dcds.2020202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the time-asymptotic behavior of solutions of the Schrodinger equation with nonlinear dissipation partial derivative(t)u = i Delta u + lambda vertical bar u vertical bar(alpha)u in R-N, N >= 1, where lambda is an element of C, R lambda < 0 and 0 < alpha < 2/N. We give a precise description of the behavior of the solutions (including decay rates in L-2 and L-infinity, and asymptotic profile), for a class of arbitrarily large initial data, under the additional assumption that alpha is sufficiently close to 2/N.
引用
收藏
页码:4801 / 4819
页数:19
相关论文
共 50 条