Acoustic analysis of the vocal tract during vowel production by finite-difference time-domain method

被引:79
|
作者
Takemoto, Hironori [1 ]
Mokhtari, Parham [1 ]
Kitamura, Tatsuya [2 ]
机构
[1] Natl Inst Informat & Commun Technol, Seika, Kyoto 6190288, Japan
[2] Konan Univ, Fac Intelligence & Informat, Higashinada Ku, Kobe, Hyogo 6588501, Japan
来源
关键词
RESONANCE; BOUNDARY; MODELS; CAVITY; MRI;
D O I
10.1121/1.3502470
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The vocal tract shape is three-dimensionally complex. For accurate acoustic analysis, a finite-difference time-domain method was introduced in the present study. By this method, transfer functions of the vocal tract for the five Japanese vowels were calculated from three-dimensionally reconstructed magnetic resonance imaging (MRI) data. The calculated transfer functions were compared with those obtained from acoustic measurements of vocal tract physical models precisely constructed from the same MRI data. Calculated transfer functions agreed well with measured ones up to 10 kHz. Acoustic effects of the piriform fossae, epiglottic valleculae, and inter-dental spaces were also examined. They caused spectral changes by generating dips. The amount of change was significant for the piriform fossae, while it was almost negligible for the other two. The piriform fossae and valleculae generated spectral dips for all the vowels. The dip frequencies of the piriform fossae were almost stable, while those of the valleculae varied among vowels. The inter-dental spaces generated very small spectral dips below 2.5 kHz for the high and middle vowels. In addition, transverse resonances within the oral cavity generated small spectral dips above 4 kHz for the low vowels. (C) 2010 Acoustical Society of America. [DOI: 10.1121/1.3502470]
引用
收藏
页码:3724 / 3738
页数:15
相关论文
共 50 条
  • [41] Multi-time-step finite-difference time-domain method
    Zheng, Yang-Ming
    Chu, Qing-Xin
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2004, 32 (09): : 1504 - 1506
  • [42] Analysis of Harmonic Generation in Lamb Waves by Finite-Difference Time-Domain Method
    Matsuda, Naoki
    Biwa, Shiro
    NONLINEAR ACOUSTICS: STATE-OF-THE-ART AND PERSPECTIVES (ISNA 19), 2012, 1474 : 188 - 191
  • [43] Transient analysis of printed lines using finite-difference time-domain method
    Ahmed, Shahid
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2013, 26 (01) : 74 - 86
  • [44] Analysis of microstrip crossovers using the nonorthogonal finite-difference time-domain method
    Kitamura, Toshiaki
    Nakamura, Satoru
    Hira, Masafumi
    Kurazono, Sadao
    Electronics and Communications in Japan, Part II: Electronics (English translation of Denshi Tsushin Gakkai Ronbunshi), 1994, 77 (01): : 26 - 34
  • [45] Rigorous electromagnetic analysis of Talbot effect with the finite-difference time-domain method
    Lu, YQ
    Zhou, CH
    Optical Design and Testing II, Pts 1 and 2, 2005, 5638 : 108 - 116
  • [46] A novel high accuracy finite-difference time-domain method
    Sekido, Harune
    Umeda, Takayuki
    EARTH PLANETS AND SPACE, 2024, 76 (01):
  • [47] Unconditionally stable implicit finite-difference time-domain method
    Gao, Wen-Jun
    Lu, Shan-Wei
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2002, 30 (06): : 900 - 902
  • [48] A DISTRIBUTED IMPLEMENTATION OF THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD
    RODOHAN, DP
    SAUNDERS, SR
    GLOVER, RJ
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 1995, 8 (3-4) : 283 - 291
  • [49] THE FINITE-DIFFERENCE TIME-DOMAIN METHOD APPLIED TO ANISOTROPIC MATERIAL
    SCHNEIDER, J
    HUDSON, S
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1993, 41 (07) : 994 - 999
  • [50] ANALYSIS OF CYLINDRICAL MICROSTRIP LINES UTILIZING THE FINITE-DIFFERENCE TIME-DOMAIN METHOD
    KITAMURA, T
    KOSHIMAE, T
    HIRA, M
    KURAZONE, S
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1994, 42 (07) : 1279 - 1282