Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling

被引:89
|
作者
Thapa, Arjun [1 ,2 ]
Wu, Ruidong [3 ]
Hu, Yibo [1 ]
Nie, Yonggang [1 ]
Singh, Paras B. [1 ,2 ]
Khatiwada, Janak R. [2 ,4 ]
Yan, Li [1 ]
Gu, Xiaodong [5 ]
Wei, Fuwen [1 ]
机构
[1] Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Int Coll, Beijing, Peoples R China
[3] Yunnan Univ, Inst Int Rivers & Ecosecur, Kunming, Yunnan, Peoples R China
[4] Chinese Acad Sci, Chengdu Inst Biol, Chengdu, Sichuan, Peoples R China
[5] Wildlife Conservat Div, Sichuan Forestry Dept, Chengdu, Sichuan, Peoples R China
来源
ECOLOGY AND EVOLUTION | 2018年 / 8卷 / 21期
关键词
habitat; Himalaya; predictive model; red panda; LANGTANG NATIONAL-PARK; SPECIES DISTRIBUTION; AILURUS-FULGENS; CLIMATE-CHANGE; GIANT PANDAS; MICROHABITAT SEPARATION; SAMPLING BIAS; CONSERVATION; HABITAT; SUITABILITY;
D O I
10.1002/ece3.4526
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
An upsurge in anthropogenic impacts has hastened the decline of the red panda (Ailurus fulgens). The red panda is a global conservation icon, but holistic conservation management has been hampered by research being restricted to certain locations and population clusters. Building a comprehensive potential habitat map for the red panda is imperative to advance the conservation effort and ensure coordinated management across international boundaries. Here, we use occurrence records of both subspecies of red pandas from across their entire range to build a habitat model using the maximum entropy algorithm (MaxEnt 3.3.3k) and the least correlated bioclimatic variables. We found that the subspecies have separate climatic spaces dominated by temperature-associated variables in the eastern geographic distribution limit and precipitation-associated variables in the western distribution limit. Annual precipitation (BIO12) and maximum temperature in the warmest months (BIO5) were major predictors of habitat suitability for A. f. fulgens and A. f. styani, respectively. Our model predicted 134,975 km(2) of red panda habitat based on 10 percentile thresholds in China (62% of total predicted habitat), Nepal (15%), Myanmar (9%), Bhutan (9%), and India (5%). Existing protected areas (PAs) encompass 28% of red panda habitat, meaning the PA network is currently insufficient and alternative conservation mechanisms are needed to protect the habitat. Bhutan's PAs provide good coverage for the red panda habitat. Furthermore, large areas of habitat were predicted in cross-broader areas, and transboundary conservation will be necessary.
引用
收藏
页码:10542 / 10554
页数:13
相关论文
共 50 条
  • [31] Maxent modeling for predicting the potential distribution of Arbutus andrachne L. belonging to climate change in Turkey
    Sarikaya, Ayse Gul
    Orucu, Omer K.
    KUWAIT JOURNAL OF SCIENCE, 2021, 48 (02)
  • [32] Response of the Endangered red panda Ailurus fulgens fulgens to anthropogenic disturbances, and its distribution in Phrumsengla National Park, Bhutan
    Dendup, Pema
    Cheng, Ellen
    Lham, Choki
    Tenzin, Ugyen
    ORYX, 2017, 51 (04) : 701 - 708
  • [33] Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model
    Ashraf, Uzma
    Ali, Hassan
    Chaudry, Muhammad Nawaz
    Ashraf, Irfan
    Batool, Adila
    Saqib, Zafeer
    SUSTAINABILITY, 2016, 8 (08)
  • [34] Evaluating mortality rates and causalities in a critically endangered felid across its whole distribution range
    Guillermo López
    Marcos López-Parra
    Germán Garrote
    Leonardo Fernández
    Teresa del Rey-Wamba
    Rafael Arenas-Rojas
    Maribel García-Tardío
    Gema Ruiz
    Irene Zorrilla
    Manuel Moral
    Miguel A. Simón
    European Journal of Wildlife Research, 2014, 60 : 359 - 366
  • [35] Evaluating mortality rates and causalities in a critically endangered felid across its whole distribution range
    Lopez, Guillermo
    Lopez-Parra, Marcos
    Garrote, German
    Fernandez, Leonardo
    del Rey-Wamba, Teresa
    Arenas-Rojas, Rafael
    Garcia-Tardio, Maribel
    Ruiz, Gema
    Zorrilla, Irene
    Moral, Manuel
    Simon, Miguel A.
    EUROPEAN JOURNAL OF WILDLIFE RESEARCH, 2014, 60 (02) : 359 - 366
  • [36] Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills
    Yang, Xue-Qing
    Kushwaha, S. P. S.
    Saran, S.
    Xu, Jianchu
    Roy, P. S.
    ECOLOGICAL ENGINEERING, 2013, 51 : 83 - 87
  • [37] Maxent Modeling for Predicting the Potential Geographical Distribution of Castanopsis carlesii under Various Climate Change Scenarios in China
    Zhong, Xiaoru
    Zhang, Lu
    Zhang, Jiabiao
    He, Liren
    Sun, Rongxi
    FORESTS, 2023, 14 (07):
  • [38] Predicting potential current distribution of Lycorma delicatula (Hemiptera: Fulgoridae) using MaxEnt model in South Korea
    Namgung, Hyeban
    Kim, Min-Jung
    Baek, Sunghoon
    Lee, Joon-Ho
    Kim, Hyojoong
    JOURNAL OF ASIA-PACIFIC ENTOMOLOGY, 2020, 23 (02) : 291 - 297
  • [39] Predicting the potential nationwide distribution of the snail vector, Oncomelania hupensis quadrasi, in the Philippines using the MaxEnt algorithm
    Recopuerto-Medina, Loida M.
    Aguado, Andrea Bernice M.
    Baldonado, Bianca Manuela M.
    Bilasano, Rica Nikki B.
    Dullano, Sophia Miel L.
    Molo, Justine Marie R.
    Dagamac, Nikki Heherson A.
    PARASITOLOGY RESEARCH, 2024, 123 (01)
  • [40] PREDICTING THE POTENTIAL ECOLOGICAL NICHE DISTRIBUTION OF SLOVENIAN FORESTS UNDER CLIMATE CHANGE USING MAXENT MODELLING
    Gregorcic, Tim
    Rozman, Andrej
    Repe, Blaz
    ACTA GEOGRAPHICA SLOVENICA-GEOGRAFSKI ZBORNIK, 2023, 63 (01) : 89 - 109