Frontier-based vs. traditional mutual fund ratings: A first backtesting analysis

被引:20
|
作者
Brandouy, Olivier [1 ]
Kerstens, Kristiaan [2 ]
Van De Woestyne, Ignace [3 ]
机构
[1] Univ Montesquieu Bordeaux IV, UMR CNRS 5113, GREThA, F-33608 Pessac, France
[2] CNRS LEM, UMR 8171, IESEG Sch Management, F-59000 Lille, France
[3] Katholieke Univ Leuven, Res Unit MEES, B-1000 Brussels, Belgium
关键词
Mutual fund rating; DEA; FDH; Shortage function; Mean-variance portfolio frontier; PORTFOLIO SELECTION; NAIVE DIVERSIFICATION; RELATIVE EFFICIENCY; SKEWNESS; INEFFICIENT; MANAGEMENT; MARKOWITZ; MODELS; RISK; DEA;
D O I
10.1016/j.ejor.2014.11.010
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We explore the potential benefits of a series of existing and new non-parametric convex and non-convex frontier-based fund rating models to summarize the information contained in the moments of the mutual fund price series. Limiting ourselves to the traditional mean-variance portfolio setting, we test in a simple backtesting setup whether these efficiency measures fare any better than more traditional financial performance measures in selecting promising investment opportunities. The evidence points to a remarkable superior performance of these frontier models compared to most, but not all traditional financial performance measures. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:332 / 342
页数:11
相关论文
共 50 条
  • [31] Productive efficiency of the swine industry in Hawaii: Stochastic frontier vs. data envelopment analysis
    Sharma, KR
    Leung, P
    Zaleski, HM
    JOURNAL OF PRODUCTIVITY ANALYSIS, 1997, 8 (04) : 447 - 459
  • [32] Productive Efficiency of the Swine Industry in Hawaii: Stochastic Frontier vs. Data Envelopment Analysis
    Khem R. Sharma
    Pingsun Leung
    Halina M. Zaleski
    Journal of Productivity Analysis, 1997, 8 : 447 - 459
  • [33] Voxel-based morphometric analysis of first-episode vs. chronic schizophrenia subjects
    Kates, WR
    Altshul, D
    Calhoun, V
    Pulver, AE
    Wong, D
    Schretlen, D
    Strasser, H
    Pearlson, GD
    BIOLOGICAL PSYCHIATRY, 2003, 53 (08) : 177S - 177S
  • [34] Machine learning vs. traditional regression analysis for fluid overload prediction in the ICU
    Andrea Sikora
    Tianyi Zhang
    David J. Murphy
    Susan E. Smith
    Brian Murray
    Rishikesan Kamaleswaran
    Xianyan Chen
    Mitchell S. Buckley
    Sandra Rowe
    John W. Devlin
    Scientific Reports, 13 (1)
  • [35] Comparative Analysis of Hate Speech Detection: Traditional vs. Deep Learning Approaches
    Pen, Haibo
    Teo, Nicole
    Wang, Zhaoxia
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 332 - 337
  • [36] Functional vs. Traditional Analysis in Biomechanical Gait Data: An Alternative Statistical Approach
    Park, Jihong
    Seeley, Matthew K.
    Francom, Devin
    Reese, C. Shane
    Hopkins, J. Ty
    JOURNAL OF HUMAN KINETICS, 2017, 60 (01) : 39 - 49
  • [37] Machine learning vs. traditional regression analysis for fluid overload prediction in the ICU
    Sikora, Andrea
    Zhang, Tianyi
    Murphy, David J.
    Smith, Susan E.
    Murray, Brian
    Kamaleswaran, Rishikesan
    Chen, Xianyan
    Buckley, Mitchell S.
    Rowe, Sandra
    Devlin, John W.
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [38] Traditional Grain-Based vs. Commercial Milk Kefirs, How Different Are They?
    Nejati, Fatemeh
    Capitain, Charlotte C.
    Krause, Jannike Lea
    Kang, Gi-Ung
    Riedel, Rene
    Chang, Hyun-Dong
    Kurreck, Jens
    Junne, Stefan
    Weller, Philipp
    Neubauer, Peter
    APPLIED SCIENCES-BASEL, 2022, 12 (08):
  • [39] Urban air quality management: the traditional vs. an exposure-based approach
    Seika, M
    Metz, N
    SCIENCE OF THE TOTAL ENVIRONMENT, 1999, 235 (1-3) : 359 - 361
  • [40] Traditional exercise vs. online fitness classes: a comparison based on participants' enjoyment
    Ntovoli, Apostolia
    Zourladani, Athanasia
    Alexandris, Konstantinos
    RETOS-NUEVAS TENDENCIAS EN EDUCACION FISICA DEPORTE Y RECREACION, 2024, (61): : 714 - 721