Tight bound on the coherent-state quantum key distribution with heterodyne detection

被引:37
|
作者
Lodewyck, Jerome
Grangier, Philippe
机构
[1] Thales Res & Technol, F-91767 Palaiseau, France
[2] CNRS, UMR 8501, Inst Opt, Lab Charles Fabry, F-91403 Orsay, France
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 02期
关键词
D O I
10.1103/PhysRevA.76.022332
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose an upper bound for the eavesdropper's information in the direct and reverse reconciliated coherent states quantum key distribution protocols with heterodyne detection. This bound is derived by maximizing the leaked information over the symplectic group of transformations that spans every physical Gaussian attack on individual pulses. We exhibit four different attacks that reach this bound, which shows that this bound is tight. Finally, we compare the secret key rate obtained with this bound to the homodyne rate.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Quantum repeaters using coherent-state communication
    van Loock, Peter
    Lutkenhaus, Norbert
    Munro, W. J.
    Nemoto, Kae
    PHYSICAL REVIEW A, 2008, 78 (06):
  • [22] COHERENT-STATE REPRESENTATION OF WIGNER DISTRIBUTION FUNCTION
    KANO, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 36 (01) : 39 - 47
  • [23] Decoy state quantum key distribution with odd coherent state
    Sun Shi-Hai
    Gao Ming
    Dai Hong-Yi
    Chen Ping-Xing
    Li Cheng-Zu
    CHINESE PHYSICS LETTERS, 2008, 25 (07) : 2358 - 2361
  • [24] Coherent-state control of noninteracting quantum entanglement
    Yoenac, Muhammed
    Eberly, J. H.
    PHYSICAL REVIEW A, 2010, 82 (02):
  • [26] Decoy state quantum key distribution with modified coherent state
    Yin, Zhen-Qiang
    Han, Zheng-Fu
    Sun, Fang-Wen
    Guo, Guang-Can
    PHYSICAL REVIEW A, 2007, 76 (01):
  • [27] Performance of coherent-state quantum target detection in the context of asymmetric hypothesis testing
    Spedalieri, Gaetana
    Pirandola, Stefano
    IET QUANTUM COMMUNICATION, 2022, 3 (02): : 112 - 117
  • [28] Optimal Coherent-State Superposition for Quantum Phase Estimation
    Qu, D. X.
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2017, 9 (04) : 593 - 597
  • [29] Coherent-state phase concentration by quantum probabilistic amplification
    Marek, Petr
    Filip, Radim
    PHYSICAL REVIEW A, 2010, 81 (02):
  • [30] COHERENT-STATE REPRESENTATION OF QUANTUM FRACTALS IN INCOMMENSURATE SYSTEMS
    WANG, K
    CHU, SI
    CHEMICAL PHYSICS LETTERS, 1990, 165 (2-3) : 199 - 207