iTRAQ-based quantitative proteomic analysis reveals alterations in the metabolism of Actinidia arguta

被引:15
|
作者
Lin, Miaomiao [1 ]
Fang, Jinbao [1 ]
Qi, Xiujuan [1 ]
Li, Yukuo [1 ]
Chen, Jinyong [1 ]
Sun, Leiming [1 ]
Zhong, Yunpeng [1 ]
机构
[1] Chinese Acad Agr Sci, Zhengzhou Fruit Res Inst, Zhengzhou 450009, He Nan, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
中国国家自然科学基金;
关键词
ANTHOCYANIN ACCUMULATION; FRUIT; BIOSYNTHESIS; EXPRESSION; PROTEINS; GENE; IDENTIFICATION; ARABIDOPSIS; INDUCTION; APOPLAST;
D O I
10.1038/s41598-017-06074-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Actinidia arguta 'Tianyuanhong' is a new kiwifruit variety with an all-red pericarp and pulp, in contrast to the all-green pulp of A. arguta 'Yongfengyihao'. Transcriptome profile analysis of fruit color has been reported, however, the metabolic mechanisms producing red flesh remain unknown, and it is unclear why the pulp of 'Tianyuanhong' is red rather than green. Herein, we identified differences between the proteomes of two A. arguta cultivars with different fruit color by using iTRAQ-based quantitative proteomic methods during the stage of color change. In total, 2310 differentially abundant proteins were detected between the two cultivars at 70 and 100 days after flowering, and the protein functions were analyzed based on KEGG and GO. The largest group of differentially expressed proteins were related to photosynthesis, glyoxylate metabolism, N metabolism, and anthocyanin biosynthesis. Finally, to verify the iTRAQ data, 12 representative genes encoding differentially expressed proteins were analyzed via quantitative real-time PCR, and these genes differed in transcriptional and translational expression levels. Our proteomic study contributes to understanding the metabolic pathways and biological processes involved in fruit color changes in different cultivars of A. arguta. These data and analyses will provide new insight into the development of kiwifruit flesh color.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] iTRAQ-based proteomic analysis reveals the mechanisms of Botrytis cinerea controlled with Wuyiencin
    Liming Shi
    Beibei Ge
    Jinzi Wang
    Binghua Liu
    Jinjin Ma
    Qiuhe Wei
    Kecheng Zhang
    BMC Microbiology, 19
  • [32] iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress
    Xie, He
    Yang, Da-Hai
    Yao, Heng
    Bai, Ge
    Zhang, Yi-Han
    Xiao, Bing-Guang
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2016, 469 (03) : 768 - 775
  • [33] iTRAQ-Based Quantitative Proteomic Analysis Reveals Proteomic Changes in Mycelium of Pleurotus ostreatus in Response to Heat Stress and Subsequent Recovery
    Zou, Yajie
    Zhang, Meijing
    Qu, Jibin
    Zhang, Jinxia
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [34] iTRAQ-based quantitative proteomic analysis reveals metabolic changes in overwintering Scylla paramamosain at two different salinities
    Zhou, Junming
    Li, Na
    Wang, Huan
    Wang, Chunlin
    Mu, Changkao
    AQUACULTURE RESEARCH, 2021, 52 (08) : 3757 - 3770
  • [35] iTRAQ-based quantitative proteomic analysis reveals the metabolic pathways of grain chalkiness in response to nitrogen topdressing in rice
    Xi, Min
    Wu, Wenge
    Xu, Youzun
    Zhou, Yongjin
    Chen, Gang
    Ji, Yalan
    Sun, Xueyuan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 154 : 622 - 635
  • [36] iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings
    Wang, Xiaoyu
    Shan, Xiaohui
    Wu, Ying
    Su, Shengzhong
    Li, Shipeng
    Liu, Hongkui
    Han, Junyou
    Xue, Chunmei
    Yuan, Yaping
    JOURNAL OF PROTEOMICS, 2016, 146 : 14 - 24
  • [37] iTRAQ-based Quantitative Proteomic Analysis of Dural Tissues Reveals Upregulated Haptoglobin to be a Potential Biomarker of Moyamoya Disease
    Zhang, Xiaojun
    Yin, Lin
    Jia, Xiaofang
    Zhang, Yujiao
    Liu, Tiefu
    Zhang, Lijun
    CURRENT PROTEOMICS, 2021, 18 (01) : 27 - 37
  • [38] iTRAQ-Based Quantitative Proteomics Reveals the Energy Metabolism Alterations Induced by Chlorogenic Acid in HepG2 Cells
    Takahashi, Shoko
    Saito, Kenji
    Li, Xuguang
    Jia, Huijuan
    Kato, Hisanori
    NUTRIENTS, 2022, 14 (08)
  • [39] ITRAQ-Based Quantitative Proteomic Analysis of Heart in a Rat Model of Exhaustive Training
    Liu, Haiyan
    Cao, Xuebin
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 66 (16) : C30 - C30
  • [40] iTRAQ-based quantitative proteomic analysis of herbicide stress in Avena ludoviciana Durieu
    Adim, Hossein
    Fahmideh, Leila
    Fakheri, Barat Ali
    Zarrini, Hamid Najafi
    Sasanfar, Hamidreza
    SCIENTIFIC REPORTS, 2025, 15 (01):