Topology optimization of periodic layouts of dielectric materials

被引:6
|
作者
Fuchi, Kazuko [1 ]
Diaz, Alejandro R. [1 ]
Rothwell, Edward [2 ]
Ouedraogo, Raoul [2 ]
Temme, Andrew [2 ]
机构
[1] Michigan State Univ, Dept Mech Engn, Coll Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Coll Engn, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Topology optimization; Dielectric material; Diffraction gratings; PHOTONIC CRYSTAL-STRUCTURES; DESIGN; HOMOGENIZATION;
D O I
10.1007/s00158-010-0522-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A topology optimization method is used to design two dimensional periodic structures with desirable transmission properties by distributing two materials of different permittivity over a rectangular representative cell. A plane wave expansion of the electric field at the input and output boundaries is used in the analysis. This allows non-homogeneous material distributions near the boundaries. Numerical examples are used to verify the robustness of the method and to investigate the importance of retaining higher modes in the expansions. It is found that the optimization problem typically admits possibly many local optima and the relevance of higher modes depends on the nature of the solution found. In some instances, higher modes play an important role and using only the dominant mode in the analysis is shown to result in errors in the evaluation of the performance of the design.
引用
收藏
页码:CP11 / 493
页数:11
相关论文
共 50 条
  • [31] Evaluation of structural outrigger belt truss layouts for tall buildings by using topology optimization
    Lee, Dong-Kyu
    Kim, Jin-Ho
    Starossek, Uwe
    Shin, Soo-Mi
    STRUCTURAL ENGINEERING AND MECHANICS, 2012, 43 (06) : 711 - 724
  • [32] Effective dielectric constant of periodic composite materials
    Sareni, B
    Krahenbuhl, L
    Brosseau, C
    JOURNAL OF APPLIED PHYSICS, 1996, 80 (03) : 1688 - 1696
  • [33] Some recent results on topology optimization of periodic composites
    Bendsoe, MP
    Neves, MM
    Sigmund, O
    TOPOLOGY OPTIMIZATION OF STRUCTURES AND COMPOSITE CONTINUA, 2000, 7 : 3 - 17
  • [34] Nonlinear dielectric response of periodic composite materials
    A. Kolpakov
    A. K. Tagantsev
    L. Berlyand
    A. Kanareykin
    Journal of Electroceramics, 2007, 18 : 129 - 137
  • [35] Periodic topology optimization using variable density method
    Jiao, Hongyu
    Zhou, Qicai
    Li, Wenjun
    Li, Ying
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2013, 49 (13): : 132 - 138
  • [36] Nonlinear dielectric response of periodic composite materials
    Kolpakov, A.
    Tagantsev, A. K.
    Berlyand, L.
    Kanareykin, A.
    JOURNAL OF ELECTROCERAMICS, 2007, 18 (1-2) : 129 - 137
  • [37] Topology Optimization of Microwave Filters Including Dielectric Resonators
    Khalil, H.
    Bila, S.
    Aubourg, M.
    Baillargeat, D.
    Verdeyme, S.
    Puech, J.
    Lapierre, L.
    Delage, C.
    Chartier, T.
    2009 EUROPEAN MICROWAVE CONFERENCE, VOLS 1-3, 2009, : 687 - +
  • [38] Multiobjective topology optimization of energy absorbing materials
    Raymond A. Wildman
    George A. Gazonas
    Structural and Multidisciplinary Optimization, 2015, 51 : 125 - 143
  • [39] Topology optimization distribution of high conductivity materials
    Jia, H. P.
    Liu, S. T.
    Liu, B.
    Jiang, C. D.
    CMESM 2006: Proceedings of the 1st International Conference on Enhancement and Promotion of Computational Methods in Engineering Science and Mechanics, 2006, : 713 - 717
  • [40] Topology optimization of functionally graded cellular materials
    Radman, A.
    Huang, X.
    Xie, Y. M.
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (04) : 1503 - 1510