The proportional partitional Shapley value

被引:10
|
作者
Maria Alonso-Meijide, Jose [1 ]
Carreras, Francesc [2 ]
Costa, Julian [3 ]
Garcia-Jurado, Ignacio [3 ]
机构
[1] Univ Santiago de Compostela, Fac Ciencias, Dept Estat & IO, Santiago De Compostela, Spain
[2] Univ Politecn Cataluna, Escola Tecn Super Enginyeries Ind & Aeronaut Terr, Dept Matemat Aplicada 2, E-08028 Barcelona, Spain
[3] Univ A Coruna, Fac Informat, Dept Matemat, La Coruna, Spain
关键词
Game theory (TU) cooperative game; Shapley value; Coalition structure; Aumann-Dreze value; COOPERATIVE GAMES;
D O I
10.1016/j.dam.2015.01.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new coalitional value is proposed under the hypothesis of isolated unions. The main difference between this value and the Aumann-Dreze value is that the allocations within each union are not given by the Shapley value of the restricted game but proportionally to the Shapley value of the original game. Axiomatic characterizations of the new value, examples illustrating its application and a comparative discussion are provided. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] The proportional Shapley value and applications
    Beal, Sylvain
    Ferrieres, Sylvain
    Remila, Eric
    Solal, Philippe
    [J]. GAMES AND ECONOMIC BEHAVIOR, 2018, 108 : 93 - 112
  • [2] Axiomatizations of the proportional Shapley value
    Manfred Besner
    [J]. Theory and Decision, 2019, 86 : 161 - 183
  • [3] The proportional coalitional Shapley value
    Maria Alonso-Meijide, Jose
    Carreras, Francesc
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (06) : 6967 - 6979
  • [4] Axiomatizations of the proportional Shapley value
    Besner, Manfred
    [J]. THEORY AND DECISION, 2019, 86 (02) : 161 - 183
  • [5] Shapley value vs. proportional rule in cooperative affairs
    Amer, Rafel
    Carreras, Francesc
    Magana, Antonio
    [J]. PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2006, 2008, 12 : 877 - 881
  • [6] The Shapley value, the Proper Shapley value, and sharing rules for cooperative ventures
    van den Brink, Rene
    Levinsky, Rene
    Zeleny, Miroslav
    [J]. OPERATIONS RESEARCH LETTERS, 2020, 48 (01) : 55 - 60
  • [7] On the interval Shapley value
    Gok, S. Z. Alparslan
    [J]. OPTIMIZATION, 2014, 63 (05) : 747 - 755
  • [8] Marginalism and the Shapley value
    Ghintran, Amandine
    [J]. REVUE D ECONOMIE POLITIQUE, 2011, 121 (02): : 155 - 177
  • [9] On the Aumann–Shapley value
    Achille Basile
    Camillo Costantini
    Paolo Vitolo
    [J]. Positivity, 2008, 12 : 613 - 629
  • [10] UNCERTAINTY OF THE SHAPLEY VALUE
    Kargin, Vladislav
    [J]. INTERNATIONAL GAME THEORY REVIEW, 2005, 7 (04) : 517 - 529