The lower central series and pseudo-Anosov dilatations

被引:0
|
作者
Farb, Benson [1 ]
Leininger, Christopher J. [2 ]
Margalit, Dan [3 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61802 USA
[3] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The theme of this paper is that algebraic complexity implies dynamical complexity for pseudo-Anosov homeomorphisms of a closed surface S-g of genus g. Penner proved that the logarithm of the minimal dilatation for a pseudo-Anosov homeomorphism of S-g tends to zero at the rate I/g. We consider here the smallest dilatation of any pseudo-Anosov homeomorphism of Sg acting trivially on Gamma/Gamma(k), the quotient of Gamma = pi(1) (S-g) by the k(th) term of its lower central series, k >= 1. In contrast to Penner's asymptotics, we prove that this minimal dilatation is bounded above and below, independently of g, with bounds tending to infinity with k. For example, in the case of the Torelli group I(Sg), we prove that L(I(Sg)), the logarithm of the minimal dilatation in I(Sg), satisfies.197 < L(I(Sg)) < 4.127. In contrast, we find pseudo-Anosov mapping classes acting trivially on Gamma/Gamma(k) whose asymptotic translation lengths on the complex of curves tend to 0 as g -> infinity.
引用
收藏
页码:799 / 827
页数:29
相关论文
共 50 条
  • [1] Pseudo-Anosov dilatations and the Johnson filtration
    Malestein, Justin
    Putman, Andrew
    GROUPS GEOMETRY AND DYNAMICS, 2016, 10 (02) : 771 - 793
  • [2] Pseudo-Anosov homeomorphisms and the lower central series of a surface group
    Malestein, Justin
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 1921 - 1948
  • [3] Constructing pseudo-Anosov maps with given dilatations
    Baik, Hyungryul
    Rafiqi, Ahmad
    Wu, Chenxi
    GEOMETRIAE DEDICATA, 2016, 180 (01) : 39 - 48
  • [4] The asymptotic behavior of least pseudo-Anosov dilatations
    Tsai, Chia-Yen
    GEOMETRY & TOPOLOGY, 2009, 13 : 2253 - 2278
  • [5] Constructing pseudo-Anosov maps with given dilatations
    Hyungryul Baik
    Ahmad Rafiqi
    Chenxi Wu
    Geometriae Dedicata, 2016, 180 : 39 - 48
  • [6] A Lower Bound for Dilatations of Certain Class of Pseudo-Anosov Maps of Riemann Surfaces
    Zhang, C.
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2009, 16 (03): : 441 - 460
  • [7] The asymptotic behavior of the minimal pseudo-ANOSOV dilatations in the hyperelliptic handlebody groups*
    Hirose, Susumu
    Kin, Eiko
    QUARTERLY JOURNAL OF MATHEMATICS, 2017, 68 (03): : 1035 - 1069
  • [8] On pseudo-Anosov autoequivalences
    Fan, Yu-Wei
    Filip, Simion
    Haiden, Fabian
    Katzarkov, Ludmil
    Liu, Yijia
    ADVANCES IN MATHEMATICS, 2021, 384
  • [9] ENUMERATING PSEUDO-ANOSOV FOLIATIONS
    PAPADOPOULOS, A
    PENNER, RC
    PACIFIC JOURNAL OF MATHEMATICS, 1990, 142 (01) : 159 - 173
  • [10] CONSTRUCTION OF PSEUDO-ANOSOV DIFFEOMORPHISMS
    ARNOUX, P
    YOCCOZ, JC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (01): : 75 - 78