On pseudo-Anosov autoequivalences

被引:10
|
作者
Fan, Yu-Wei
Filip, Simion
Haiden, Fabian
Katzarkov, Ludmil
Liu, Yijia
机构
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Triangulated categories; Autoequivalences; Bridgeland stability conditions; Pseudo-Anosov maps; BRIDGELAND STABILITY CONDITIONS; CATEGORIES; THREEFOLDS; ALGEBRAS; QUIVERS; SPACES;
D O I
10.1016/j.aim.2021.107732
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by results of Thurston, we prove that any autoequivalence of a triangulated category induces a filtration by triangulated subcategories, provided the existence of Bridgeland stability conditions. The filtration is given by the exponential growth rate of masses under iterates of the autoequivalence, and only depends on the choice of a connected component of the stability manifold. We then propose a new definition of pseudo-Anosov autoequivalences, and prove that our definition is more general than the one previously proposed by Dimitrov, Haiden, Katzarkov, and Kontsevich. We construct new examples of pseudo-Anosov autoequivalences on the derived categories of quintic Calabi-Yau threefolds and quiver Calabi-Yau categories. Finally, we prove that certain pseudo-Anosov autoequivalences on quiver 3-Calabi-Yau categories act hyperbolically on the space of Bridgeland stability conditions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] ENUMERATING PSEUDO-ANOSOV FOLIATIONS
    PAPADOPOULOS, A
    PENNER, RC
    PACIFIC JOURNAL OF MATHEMATICS, 1990, 142 (01) : 159 - 173
  • [2] CONSTRUCTION OF PSEUDO-ANOSOV DIFFEOMORPHISMS
    ARNOUX, P
    YOCCOZ, JC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (01): : 75 - 78
  • [4] On the flux of pseudo-Anosov homeomorphisms
    Colin, Vincent
    Honda, Ko
    Laudenbach, Francois
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (04): : 2147 - 2160
  • [5] PSEUDO-ANOSOV TEICHMULLER MAPPINGS
    MARDEN, A
    STREBEL, K
    JOURNAL D ANALYSE MATHEMATIQUE, 1986, 46 : 194 - 220
  • [6] A CHARACTERIZATION OF PSEUDO-ANOSOV FOLIATIONS
    PAPADOPOULOS, A
    PENNER, RC
    PACIFIC JOURNAL OF MATHEMATICS, 1987, 130 (02) : 359 - 377
  • [7] A Geometric Criterion to Be Pseudo-Anosov
    Kent, Richard P.
    Leininger, Christopher J.
    MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (02) : 227 - 251
  • [8] A family of pseudo-Anosov maps
    Demers, Mark F.
    Wojtkowski, Maciej P.
    NONLINEARITY, 2009, 22 (07) : 1743 - 1760
  • [9] A SEQUENCE OF PSEUDO-ANOSOV DIFFEOMORPHISMS
    NEUWIRTH, L
    PATTERSON, N
    ANNALS OF MATHEMATICS STUDIES, 1987, (111): : 443 - 449
  • [10] AN EXAMPLE OF PSEUDO-ANOSOV DIFFEOMORPHISM
    ARNOUX, P
    FATHI, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (02): : 241 - 244