On pseudo-Anosov autoequivalences

被引:10
|
作者
Fan, Yu-Wei
Filip, Simion
Haiden, Fabian
Katzarkov, Ludmil
Liu, Yijia
机构
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Triangulated categories; Autoequivalences; Bridgeland stability conditions; Pseudo-Anosov maps; BRIDGELAND STABILITY CONDITIONS; CATEGORIES; THREEFOLDS; ALGEBRAS; QUIVERS; SPACES;
D O I
10.1016/j.aim.2021.107732
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by results of Thurston, we prove that any autoequivalence of a triangulated category induces a filtration by triangulated subcategories, provided the existence of Bridgeland stability conditions. The filtration is given by the exponential growth rate of masses under iterates of the autoequivalence, and only depends on the choice of a connected component of the stability manifold. We then propose a new definition of pseudo-Anosov autoequivalences, and prove that our definition is more general than the one previously proposed by Dimitrov, Haiden, Katzarkov, and Kontsevich. We construct new examples of pseudo-Anosov autoequivalences on the derived categories of quintic Calabi-Yau threefolds and quiver Calabi-Yau categories. Finally, we prove that certain pseudo-Anosov autoequivalences on quiver 3-Calabi-Yau categories act hyperbolically on the space of Bridgeland stability conditions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条
  • [31] PSEUDO-ANOSOV DIFFEOMORPHISMS AND HEEGAARD DECOMPOSITION
    FATHI, A
    LAUDENBACH, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 291 (06): : 423 - 425
  • [32] Incompressible surfaces and pseudo-Anosov flows
    Mangum, BS
    TOPOLOGY AND ITS APPLICATIONS, 1998, 87 (01) : 29 - 51
  • [33] HEEGAARD SPLITTINGS AND PSEUDO-ANOSOV MAPS
    Namazi, Hossein
    Souto, Juan
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) : 1195 - 1228
  • [34] Partial Hyperbolicity and Pseudo-Anosov Dynamics
    Sergio R. Fenley
    Rafael Potrie
    Geometric and Functional Analysis, 2024, 34 : 409 - 485
  • [35] Undistorted purely pseudo-Anosov groups
    Bestvina, Mladen
    Bromberg, Kenneth
    Kent, Richard P.
    Leininger, Christopher J.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 760 : 213 - 227
  • [36] Unimodal generalized pseudo-Anosov maps
    de Carvalho, AE
    Hall, T
    GEOMETRY & TOPOLOGY, 2004, 8 : 1127 - 1188
  • [37] Heegaard Splittings and Pseudo-Anosov Maps
    Hossein Namazi
    Juan Souto
    Geometric and Functional Analysis, 2009, 19 : 1195 - 1228
  • [38] PSEUDO-ANOSOV EIGENFOLIATIONS ON PANOV PLANES
    Johnson, Chris
    Schmoll, Martin
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2014, 21 : 89 - 108
  • [39] Pseudo-Anosov flows and incompressible tori
    Fenley, SR
    GEOMETRIAE DEDICATA, 2003, 99 (01) : 61 - 102
  • [40] Expanding factors for pseudo-Anosov homeomorphisms
    Rykken, E
    MICHIGAN MATHEMATICAL JOURNAL, 1999, 46 (02) : 281 - 296