Some equations relating multiwavelets and multiscaling functions

被引:9
|
作者
Dutkay, DE [1 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
wavelet; scaling function; shift invariant; trace; frame;
D O I
10.1016/j.jfa.2005.01.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The local trace function introduced in [Dutkay, The local trace function of shift invariant spaces, J. Operat. Theory 52(2) (2004), 267-291] is used to derive equations that relate multiwavelets and multiscaling functions in the context of a generalized multiresolution analysis, without appealing to filters. A construction of normalized tight frame (NTF) wavelets is given. Particular instances of the construction include NTF and orthonormal wavelet sets. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [21] Smooth multiwavelets based on two scaling functions
    Rieder, P
    Nossek, JA
    PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1996, : 309 - 312
  • [22] SOME GENERALIZATIONS OF A FORMULA OF HUMBERT,PIERRE RELATING LAURICELLA FUNCTIONS
    SRIVASTAVA, HM
    LAVOIE, JL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (14): : 753 - 758
  • [23] SOME TOPOLOGICAL THEOREMS RELATING TO CLOSE-TO-CONVEX FUNCTIONS
    QUINE, JR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 14 (OCT): : 39 - 42
  • [24] Some properties of analytic functions relating to the Miller and Mocanu result
    Nunokawa, Mamoru
    Owa, Shigeyoshi
    Duman, Emel Yavuz
    Aydogan, Melike
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (05) : 1291 - 1295
  • [25] Orthogonal two-direction multiscaling functions
    Xie C.
    Yang S.
    Frontiers of Mathematics in China, 2006, 1 (4) : 604 - 611
  • [26] SOME TOPOLOGICAL THEOREMS RELATING TO CLOSE-TO-CONVEX FUNCTIONS
    QUINE, JR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A105 - A105
  • [27] SOME COEFFICIENT PROPERTIES RELATING TO A CERTAIN CLASS OF STARLIKE FUNCTIONS
    Raina, Ravinder Krishna
    Sokol, Janusz
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) : 417 - 425
  • [28] Multiscaling fractional advection-dispersion equations and their solutions
    Schumer, R
    Benson, DA
    Meerschaert, MM
    Baeumer, B
    WATER RESOURCES RESEARCH, 2003, 39 (01)
  • [29] The Traits of Matrix Multiscaling Functions and Applications in Mathematical Modeling
    Wang, Ping-An
    2011 SECOND ETP/IITA CONFERENCE ON TELECOMMUNICATION AND INFORMATION (TEIN 2011), VOL 1, 2011, : 146 - 150
  • [30] APPROXIMATION ORDER OF TWO-DIRECTION MULTISCALING FUNCTIONS
    Kwon, Soon-Geol
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (08) : 2669 - 2688